000851121 001__ 851121
000851121 005__ 20240712113111.0
000851121 0247_ $$2doi$$a10.1016/j.jpowsour.2017.07.062
000851121 0247_ $$2ISSN$$a0378-7753
000851121 0247_ $$2ISSN$$a1873-2755
000851121 0247_ $$2WOS$$aWOS:000411544300010
000851121 037__ $$aFZJ-2018-04823
000851121 082__ $$a620
000851121 1001_ $$00000-0001-9681-273X$$aFriesen, Alex$$b0
000851121 245__ $$aAl2O3 coating on anode surface in lithium ion batteries: Impact on low temperature cycling and safety behavior
000851121 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000851121 3367_ $$2DRIVER$$aarticle
000851121 3367_ $$2DataCite$$aOutput Types/Journal article
000851121 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534252170_7415
000851121 3367_ $$2BibTeX$$aARTICLE
000851121 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851121 3367_ $$00$$2EndNote$$aJournal Article
000851121 520__ $$aCommercial 18650-type lithium ion cells employing an Al2O3 coating on the anode surface as a safety feature are investigated regarding cycling behavior at low temperatures and related safety. Due to irreversible lithium metal deposition, the cells show a pronounced capacity fading, especially in the first cycles, leading to a shortened lifetime. The amount of reversibly strippable lithium metal decreases with every cycle. Post-mortem analysis of electrochemically aged anodes reveals a thick layer of lithium metal deposited beneath the coating. The Al2O3 coating on the electrode surface is mostly intact. The lithium metal deposition and dissolution mechanisms were determined combining electrochemical and post-mortem methods. Moreover, the cell response to mechanical and thermal abuse was determined in an open and adiabatic system, revealing a similar behavior of fresh and aged cells, thus, demonstrating no deterioration in the safety behavior despite the presence of a thick lithium metal layer on the anode surface.
000851121 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000851121 588__ $$aDataset connected to CrossRef
000851121 7001_ $$0P:(DE-HGF)0$$aHildebrand, Stephan$$b1
000851121 7001_ $$0P:(DE-HGF)0$$aHorsthemke, Fabian$$b2
000851121 7001_ $$0P:(DE-HGF)0$$aBörner, Markus$$b3
000851121 7001_ $$00000-0002-5670-0327$$aKlöpsch, Richard$$b4
000851121 7001_ $$00000-0001-8892-8978$$aNiehoff, Philip$$b5$$eCorresponding author
000851121 7001_ $$0P:(DE-HGF)0$$aSchappacher, Falko M.$$b6
000851121 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b7$$ufzj
000851121 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2017.07.062$$gVol. 363, p. 70 - 77$$p70 - 77$$tJournal of power sources$$v363$$x0378-7753$$y2017
000851121 8564_ $$uhttps://juser.fz-juelich.de/record/851121/files/1-s2.0-S0378775317309461-main.pdf$$yRestricted
000851121 8564_ $$uhttps://juser.fz-juelich.de/record/851121/files/1-s2.0-S0378775317309461-main.gif?subformat=icon$$xicon$$yRestricted
000851121 8564_ $$uhttps://juser.fz-juelich.de/record/851121/files/1-s2.0-S0378775317309461-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000851121 8564_ $$uhttps://juser.fz-juelich.de/record/851121/files/1-s2.0-S0378775317309461-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000851121 8564_ $$uhttps://juser.fz-juelich.de/record/851121/files/1-s2.0-S0378775317309461-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000851121 8564_ $$uhttps://juser.fz-juelich.de/record/851121/files/1-s2.0-S0378775317309461-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851121 909CO $$ooai:juser.fz-juelich.de:851121$$pVDB
000851121 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b7$$kFZJ
000851121 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000851121 9141_ $$y2018
000851121 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2015
000851121 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851121 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851121 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000851121 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851121 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851121 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851121 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851121 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851121 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851121 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851121 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000851121 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2015
000851121 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000851121 980__ $$ajournal
000851121 980__ $$aVDB
000851121 980__ $$aI:(DE-Juel1)IEK-12-20141217
000851121 980__ $$aUNRESTRICTED
000851121 981__ $$aI:(DE-Juel1)IMD-4-20141217