000851127 001__ 851127
000851127 005__ 20240712113111.0
000851127 0247_ $$2doi$$a10.1039/C7EE01473B
000851127 0247_ $$2ISSN$$a1754-5692
000851127 0247_ $$2ISSN$$a1754-5706
000851127 0247_ $$2WOS$$aWOS:000414774500006
000851127 0247_ $$2altmetric$$aaltmetric:23397034
000851127 037__ $$aFZJ-2018-04829
000851127 082__ $$a690
000851127 1001_ $$0P:(DE-HGF)0$$aKolek, M.$$b0
000851127 245__ $$aUltra-high cycling stability of poly(vinylphenothiazine) as a battery cathode material resulting from π–π interactions
000851127 260__ $$aCambridge$$bRSC Publ.$$c2017
000851127 3367_ $$2DRIVER$$aarticle
000851127 3367_ $$2DataCite$$aOutput Types/Journal article
000851127 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534252932_7179
000851127 3367_ $$2BibTeX$$aARTICLE
000851127 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851127 3367_ $$00$$2EndNote$$aJournal Article
000851127 520__ $$aOrganic cathode materials are promising candidates for a new generation of “green batteries”, since they have low toxicity and can be produced from renewable resources or from oil. Especially suitable are organic redox polymers that can be reversibly oxidized and reduced. Because of their often-insulating nature, however, many redox polymers have limited rate capabilities. Their cycling stabilities, which are of high importance for the long cycle-life of a battery cell, rarely exceed 1000 cycles. Here, we present a new concept for redox polymers as cathode materials, in which the oxidized states are stabilized through π–π interactions between redox-active groups. We found that due to these interactions poly(3-vinyl-N-methylphenothiazine) showed excellent cycling stability (after 10[thin space (1/6-em)]000 cycles at a 10C rate, 93% of the initial capacity was retained) in addition to a high rate capability because of supramolecular hole transport. We propose this concept to be used in the future design of redox polymers for batteries.
000851127 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000851127 588__ $$aDataset connected to CrossRef
000851127 7001_ $$0P:(DE-HGF)0$$aOtteny, F.$$b1
000851127 7001_ $$0P:(DE-HGF)0$$aSchmidt, P.$$b2
000851127 7001_ $$0P:(DE-HGF)0$$aMück-Lichtenfeld, C.$$b3
000851127 7001_ $$0P:(DE-HGF)0$$aEinholz, C.$$b4
000851127 7001_ $$0P:(DE-HGF)0$$aBecking, J.$$b5
000851127 7001_ $$0P:(DE-HGF)0$$aSchleicher, E.$$b6
000851127 7001_ $$0P:(DE-Juel1)166130$$aWinter, M.$$b7$$ufzj
000851127 7001_ $$00000-0003-4378-4805$$aBieker, P.$$b8$$eCorresponding author
000851127 7001_ $$00000-0002-2430-1380$$aEsser, B.$$b9$$eCorresponding author
000851127 773__ $$0PERI:(DE-600)2439879-2$$a10.1039/C7EE01473B$$gVol. 10, no. 11, p. 2334 - 2341$$n11$$p2334 - 2341$$tEnergy & environmental science$$v10$$x1754-5706$$y2017
000851127 8564_ $$uhttps://juser.fz-juelich.de/record/851127/files/c7ee01473b.pdf$$yRestricted
000851127 8564_ $$uhttps://juser.fz-juelich.de/record/851127/files/c7ee01473b.gif?subformat=icon$$xicon$$yRestricted
000851127 8564_ $$uhttps://juser.fz-juelich.de/record/851127/files/c7ee01473b.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000851127 8564_ $$uhttps://juser.fz-juelich.de/record/851127/files/c7ee01473b.jpg?subformat=icon-180$$xicon-180$$yRestricted
000851127 8564_ $$uhttps://juser.fz-juelich.de/record/851127/files/c7ee01473b.jpg?subformat=icon-640$$xicon-640$$yRestricted
000851127 8564_ $$uhttps://juser.fz-juelich.de/record/851127/files/c7ee01473b.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851127 909CO $$ooai:juser.fz-juelich.de:851127$$pVDB
000851127 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
000851127 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b7$$kFZJ
000851127 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000851127 9141_ $$y2018
000851127 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000851127 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERG ENVIRON SCI : 2015
000851127 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851127 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851127 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000851127 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851127 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851127 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851127 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851127 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000851127 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851127 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000851127 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bENERG ENVIRON SCI : 2015
000851127 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000851127 980__ $$ajournal
000851127 980__ $$aVDB
000851127 980__ $$aI:(DE-Juel1)IEK-12-20141217
000851127 980__ $$aUNRESTRICTED
000851127 981__ $$aI:(DE-Juel1)IMD-4-20141217