| Home > Publications database > Ultra-high cycling stability of poly(vinylphenothiazine) as a battery cathode material resulting from π–π interactions > print |
| 001 | 851127 | ||
| 005 | 20240712113111.0 | ||
| 024 | 7 | _ | |a 10.1039/C7EE01473B |2 doi |
| 024 | 7 | _ | |a 1754-5692 |2 ISSN |
| 024 | 7 | _ | |a 1754-5706 |2 ISSN |
| 024 | 7 | _ | |a WOS:000414774500006 |2 WOS |
| 024 | 7 | _ | |a altmetric:23397034 |2 altmetric |
| 037 | _ | _ | |a FZJ-2018-04829 |
| 082 | _ | _ | |a 690 |
| 100 | 1 | _ | |a Kolek, M. |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Ultra-high cycling stability of poly(vinylphenothiazine) as a battery cathode material resulting from π–π interactions |
| 260 | _ | _ | |a Cambridge |c 2017 |b RSC Publ. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1534252932_7179 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Organic cathode materials are promising candidates for a new generation of “green batteries”, since they have low toxicity and can be produced from renewable resources or from oil. Especially suitable are organic redox polymers that can be reversibly oxidized and reduced. Because of their often-insulating nature, however, many redox polymers have limited rate capabilities. Their cycling stabilities, which are of high importance for the long cycle-life of a battery cell, rarely exceed 1000 cycles. Here, we present a new concept for redox polymers as cathode materials, in which the oxidized states are stabilized through π–π interactions between redox-active groups. We found that due to these interactions poly(3-vinyl-N-methylphenothiazine) showed excellent cycling stability (after 10[thin space (1/6-em)]000 cycles at a 10C rate, 93% of the initial capacity was retained) in addition to a high rate capability because of supramolecular hole transport. We propose this concept to be used in the future design of redox polymers for batteries. |
| 536 | _ | _ | |a 131 - Electrochemical Storage (POF3-131) |0 G:(DE-HGF)POF3-131 |c POF3-131 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Otteny, F. |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Schmidt, P. |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Mück-Lichtenfeld, C. |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Einholz, C. |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Becking, J. |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Schleicher, E. |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Winter, M. |0 P:(DE-Juel1)166130 |b 7 |u fzj |
| 700 | 1 | _ | |a Bieker, P. |0 0000-0003-4378-4805 |b 8 |e Corresponding author |
| 700 | 1 | _ | |a Esser, B. |0 0000-0002-2430-1380 |b 9 |e Corresponding author |
| 773 | _ | _ | |a 10.1039/C7EE01473B |g Vol. 10, no. 11, p. 2334 - 2341 |0 PERI:(DE-600)2439879-2 |n 11 |p 2334 - 2341 |t Energy & environmental science |v 10 |y 2017 |x 1754-5706 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/851127/files/c7ee01473b.pdf |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/851127/files/c7ee01473b.gif?subformat=icon |x icon |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/851127/files/c7ee01473b.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/851127/files/c7ee01473b.jpg?subformat=icon-180 |x icon-180 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/851127/files/c7ee01473b.jpg?subformat=icon-640 |x icon-640 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/851127/files/c7ee01473b.pdf?subformat=pdfa |x pdfa |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:851127 |p VDB |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)166130 |
| 913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |2 G:(DE-HGF)POF3-100 |v Electrochemical Storage |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2018 |
| 915 | _ | _ | |a Allianz-Lizenz / DFG |0 StatID:(DE-HGF)0400 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ENERG ENVIRON SCI : 2015 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
| 915 | _ | _ | |a IF >= 25 |0 StatID:(DE-HGF)9925 |2 StatID |b ENERG ENVIRON SCI : 2015 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|