000851129 001__ 851129
000851129 005__ 20240712113111.0
000851129 0247_ $$2doi$$a10.1039/C7JA00129K
000851129 0247_ $$2ISSN$$a0267-9477
000851129 0247_ $$2ISSN$$a1364-5544
000851129 0247_ $$2WOS$$aWOS:000414347800003
000851129 0247_ $$2altmetric$$aaltmetric:24580229
000851129 037__ $$aFZJ-2018-04831
000851129 082__ $$a540
000851129 1001_ $$0P:(DE-HGF)0$$aEvertz, Marco$$b0
000851129 245__ $$aMatrix-matched standards for the quantification of elemental lithium ion battery degradation products deposited on carbonaceous negative electrodes using pulsed-glow discharge-sector field-mass spectrometry
000851129 260__ $$aCambridge$$bChemSoc$$c2017
000851129 3367_ $$2DRIVER$$aarticle
000851129 3367_ $$2DataCite$$aOutput Types/Journal article
000851129 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534310596_7179
000851129 3367_ $$2BibTeX$$aARTICLE
000851129 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851129 3367_ $$00$$2EndNote$$aJournal Article
000851129 520__ $$aIn this work an external calibration approach for glow discharge-sector field-mass spectrometry (GD-SF-MS) using matrix-matched self-prepared carbonaceous standards for elemental battery degradation products of LiNi1/3Co1/3Mn1/3O2 (NCM111) positive electrodes like lithium, manganese, cobalt and nickel is adapted. Firstly, the standards were prepared using graphite mixed with increasing contents of NCM111 which was coated on a thin copper foil as a current collector. The homogeneous distribution of NCM111 in the standards was proven via SEM/EDX images and the bulk homogeneity of the electrode sheets was validated via ICP-OES. Afterwards, sufficient linearity could be obtained in a calibration range of 1 mg g−1 to 28 mg g−1 for 7Li with respect to the active material mass. Additionally, the matrix-matched relative sensitivity factors (RSFs) of each element could be calculated. Limits of detection (LODs) ranging from 80 μg g−1 (7Li) up to 393 μg g−1 (58Ni) could be achieved at low (R > 300) and medium (R > 4000) resolutions for the Element GD, respectively. Secondly, we adapted the matrix-matched RSF values in order to investigate cycled electrodes by monitoring the 7Li signal as well as common isotopes from lithium ion batteries – such as 31P and 19F, originating from the conducting salt – and transition metals to conduct depth-resolved analysis. The concentration of transition metals in all of the cycled electrodes was below the LOD of the GD-SF-MS method which was investigated in a previous study, showing a maximum bulk deposition of transition metals of 4.5 mg g−1. As expected, an accumulation of 7Li in the first few minutes (=surface layers) of sputtering was observed in the cycled carbonaceous negative electrodes followed by a decreasing 7Li signal with ongoing sputtering indicating the presence of a solid electrolyte interphase (SEI) passivation layer.
000851129 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000851129 588__ $$aDataset connected to CrossRef
000851129 7001_ $$0P:(DE-HGF)0$$aSchwieters, Timo$$b1
000851129 7001_ $$0P:(DE-HGF)0$$aBörner, Markus$$b2
000851129 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b3$$ufzj
000851129 7001_ $$00000-0003-1508-6073$$aNowak, Sascha$$b4$$eCorresponding author
000851129 773__ $$0PERI:(DE-600)1484654-8$$a10.1039/C7JA00129K$$gVol. 32, no. 10, p. 1862 - 1867$$n10$$p1862 - 1867$$tJournal of analytical atomic spectrometry$$v32$$x1364-5544$$y2017
000851129 8564_ $$uhttps://juser.fz-juelich.de/record/851129/files/c7ja00129k.pdf$$yRestricted
000851129 8564_ $$uhttps://juser.fz-juelich.de/record/851129/files/c7ja00129k.gif?subformat=icon$$xicon$$yRestricted
000851129 8564_ $$uhttps://juser.fz-juelich.de/record/851129/files/c7ja00129k.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000851129 8564_ $$uhttps://juser.fz-juelich.de/record/851129/files/c7ja00129k.jpg?subformat=icon-180$$xicon-180$$yRestricted
000851129 8564_ $$uhttps://juser.fz-juelich.de/record/851129/files/c7ja00129k.jpg?subformat=icon-640$$xicon-640$$yRestricted
000851129 8564_ $$uhttps://juser.fz-juelich.de/record/851129/files/c7ja00129k.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851129 909CO $$ooai:juser.fz-juelich.de:851129$$pVDB
000851129 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ
000851129 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000851129 9141_ $$y2018
000851129 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000851129 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000851129 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851129 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851129 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851129 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ANAL ATOM SPECTROM : 2015
000851129 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851129 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851129 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851129 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851129 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851129 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851129 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000851129 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851129 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000851129 980__ $$ajournal
000851129 980__ $$aVDB
000851129 980__ $$aI:(DE-Juel1)IEK-12-20141217
000851129 980__ $$aUNRESTRICTED
000851129 981__ $$aI:(DE-Juel1)IMD-4-20141217