001     851129
005     20240712113111.0
024 7 _ |a 10.1039/C7JA00129K
|2 doi
024 7 _ |a 0267-9477
|2 ISSN
024 7 _ |a 1364-5544
|2 ISSN
024 7 _ |a WOS:000414347800003
|2 WOS
024 7 _ |a altmetric:24580229
|2 altmetric
037 _ _ |a FZJ-2018-04831
082 _ _ |a 540
100 1 _ |a Evertz, Marco
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Matrix-matched standards for the quantification of elemental lithium ion battery degradation products deposited on carbonaceous negative electrodes using pulsed-glow discharge-sector field-mass spectrometry
260 _ _ |a Cambridge
|c 2017
|b ChemSoc
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1534310596_7179
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this work an external calibration approach for glow discharge-sector field-mass spectrometry (GD-SF-MS) using matrix-matched self-prepared carbonaceous standards for elemental battery degradation products of LiNi1/3Co1/3Mn1/3O2 (NCM111) positive electrodes like lithium, manganese, cobalt and nickel is adapted. Firstly, the standards were prepared using graphite mixed with increasing contents of NCM111 which was coated on a thin copper foil as a current collector. The homogeneous distribution of NCM111 in the standards was proven via SEM/EDX images and the bulk homogeneity of the electrode sheets was validated via ICP-OES. Afterwards, sufficient linearity could be obtained in a calibration range of 1 mg g−1 to 28 mg g−1 for 7Li with respect to the active material mass. Additionally, the matrix-matched relative sensitivity factors (RSFs) of each element could be calculated. Limits of detection (LODs) ranging from 80 μg g−1 (7Li) up to 393 μg g−1 (58Ni) could be achieved at low (R > 300) and medium (R > 4000) resolutions for the Element GD, respectively. Secondly, we adapted the matrix-matched RSF values in order to investigate cycled electrodes by monitoring the 7Li signal as well as common isotopes from lithium ion batteries – such as 31P and 19F, originating from the conducting salt – and transition metals to conduct depth-resolved analysis. The concentration of transition metals in all of the cycled electrodes was below the LOD of the GD-SF-MS method which was investigated in a previous study, showing a maximum bulk deposition of transition metals of 4.5 mg g−1. As expected, an accumulation of 7Li in the first few minutes (=surface layers) of sputtering was observed in the cycled carbonaceous negative electrodes followed by a decreasing 7Li signal with ongoing sputtering indicating the presence of a solid electrolyte interphase (SEI) passivation layer.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schwieters, Timo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Börner, Markus
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 3
|u fzj
700 1 _ |a Nowak, Sascha
|0 0000-0003-1508-6073
|b 4
|e Corresponding author
773 _ _ |a 10.1039/C7JA00129K
|g Vol. 32, no. 10, p. 1862 - 1867
|0 PERI:(DE-600)1484654-8
|n 10
|p 1862 - 1867
|t Journal of analytical atomic spectrometry
|v 32
|y 2017
|x 1364-5544
856 4 _ |u https://juser.fz-juelich.de/record/851129/files/c7ja00129k.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851129/files/c7ja00129k.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851129/files/c7ja00129k.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851129/files/c7ja00129k.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851129/files/c7ja00129k.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851129/files/c7ja00129k.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:851129
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ANAL ATOM SPECTROM : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21