000851130 001__ 851130
000851130 005__ 20240712113111.0
000851130 0247_ $$2doi$$a10.1149/2.0961712jes
000851130 0247_ $$2ISSN$$a0013-4651
000851130 0247_ $$2ISSN$$a0096-4743
000851130 0247_ $$2ISSN$$a0096-4786
000851130 0247_ $$2ISSN$$a1945-7111
000851130 0247_ $$2WOS$$aWOS:000415283600026
000851130 037__ $$aFZJ-2018-04832
000851130 082__ $$a540
000851130 1001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b0$$eCorresponding author$$ufzj
000851130 245__ $$aA Tutorial into Practical Capacity and Mass Balancing of Lithium Ion Batteries
000851130 260__ $$aPennington, NJ$$bElectrochemical Soc.$$c2017
000851130 3367_ $$2DRIVER$$aarticle
000851130 3367_ $$2DataCite$$aOutput Types/Journal article
000851130 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534310851_29009
000851130 3367_ $$2BibTeX$$aARTICLE
000851130 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851130 3367_ $$00$$2EndNote$$aJournal Article
000851130 520__ $$aIn a lithium ion battery, balancing of active materials is an essential requirement with respect to safety and cycle life. However, capacity oversizing of negative electrodes is associated with decrease of specific energy/energy density. In this work, the required trade-off between maximized specific energy and minimized risk of lithium plating is thoroughly investigated by evaluating underlying potential/voltage curves. The adjustment of targeted state of charge (SOC) for both, positive and the negative electrode, can be achieved by intentional selection of only two parameters: negative/positive electrode active mass ratio and charge cutoff voltage. For investigation and controlling reasons, specific charge capacity reveals to be a simple but effective tool to indirectly predict electrode potentials. While cell kinetics/overvoltage are influenced by both electrodes, specific capacity losses are affected by a single electrode. The latter only correlate with negative electrode`s BET surface area as long as specific capacity losses of negative electrodes are higher compared to positive electrodes. Based on these insights, a more systematic performance and safety optimized handling of the trade-off between specific energy and safety risk can be realized.
000851130 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000851130 588__ $$aDataset connected to CrossRef
000851130 7001_ $$00000-0002-2097-5193$$aPlacke, Tobias$$b1
000851130 7001_ $$0P:(DE-HGF)0$$aStreipert, Benjamin$$b2
000851130 7001_ $$0P:(DE-HGF)0$$aRothermel, Sergej$$b3
000851130 7001_ $$0P:(DE-HGF)0$$aWagner, Ralf$$b4
000851130 7001_ $$0P:(DE-Juel1)172048$$aMeister, Paul$$b5$$ufzj
000851130 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b6$$ufzj
000851130 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b7$$eCorresponding author$$ufzj
000851130 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/2.0961712jes$$gVol. 164, no. 12, p. A2479 - A2486$$n12$$pA2479 - A2486$$tJournal of the Electrochemical Society$$v164$$x1945-7111$$y2017
000851130 8564_ $$uhttps://juser.fz-juelich.de/record/851130/files/J.%20Electrochem.%20Soc.-2017-Kasnatscheew-A2479-86.pdf$$yRestricted
000851130 8564_ $$uhttps://juser.fz-juelich.de/record/851130/files/J.%20Electrochem.%20Soc.-2017-Kasnatscheew-A2479-86.gif?subformat=icon$$xicon$$yRestricted
000851130 8564_ $$uhttps://juser.fz-juelich.de/record/851130/files/J.%20Electrochem.%20Soc.-2017-Kasnatscheew-A2479-86.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000851130 8564_ $$uhttps://juser.fz-juelich.de/record/851130/files/J.%20Electrochem.%20Soc.-2017-Kasnatscheew-A2479-86.jpg?subformat=icon-180$$xicon-180$$yRestricted
000851130 8564_ $$uhttps://juser.fz-juelich.de/record/851130/files/J.%20Electrochem.%20Soc.-2017-Kasnatscheew-A2479-86.jpg?subformat=icon-640$$xicon-640$$yRestricted
000851130 8564_ $$uhttps://juser.fz-juelich.de/record/851130/files/J.%20Electrochem.%20Soc.-2017-Kasnatscheew-A2479-86.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851130 909CO $$ooai:juser.fz-juelich.de:851130$$pVDB
000851130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b0$$kFZJ
000851130 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000851130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172048$$aForschungszentrum Jülich$$b5$$kFZJ
000851130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b6$$kFZJ
000851130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b7$$kFZJ
000851130 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000851130 9141_ $$y2018
000851130 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2015
000851130 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851130 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851130 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851130 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851130 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851130 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851130 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851130 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000851130 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851130 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000851130 980__ $$ajournal
000851130 980__ $$aVDB
000851130 980__ $$aI:(DE-Juel1)IEK-12-20141217
000851130 980__ $$aUNRESTRICTED
000851130 981__ $$aI:(DE-Juel1)IMD-4-20141217