001     851130
005     20240712113111.0
024 7 _ |a 10.1149/2.0961712jes
|2 doi
024 7 _ |a 0013-4651
|2 ISSN
024 7 _ |a 0096-4743
|2 ISSN
024 7 _ |a 0096-4786
|2 ISSN
024 7 _ |a 1945-7111
|2 ISSN
024 7 _ |a WOS:000415283600026
|2 WOS
037 _ _ |a FZJ-2018-04832
082 _ _ |a 540
100 1 _ |a Kasnatscheew, Johannes
|0 P:(DE-Juel1)171865
|b 0
|e Corresponding author
|u fzj
245 _ _ |a A Tutorial into Practical Capacity and Mass Balancing of Lithium Ion Batteries
260 _ _ |a Pennington, NJ
|c 2017
|b Electrochemical Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1534310851_29009
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In a lithium ion battery, balancing of active materials is an essential requirement with respect to safety and cycle life. However, capacity oversizing of negative electrodes is associated with decrease of specific energy/energy density. In this work, the required trade-off between maximized specific energy and minimized risk of lithium plating is thoroughly investigated by evaluating underlying potential/voltage curves. The adjustment of targeted state of charge (SOC) for both, positive and the negative electrode, can be achieved by intentional selection of only two parameters: negative/positive electrode active mass ratio and charge cutoff voltage. For investigation and controlling reasons, specific charge capacity reveals to be a simple but effective tool to indirectly predict electrode potentials. While cell kinetics/overvoltage are influenced by both electrodes, specific capacity losses are affected by a single electrode. The latter only correlate with negative electrode`s BET surface area as long as specific capacity losses of negative electrodes are higher compared to positive electrodes. Based on these insights, a more systematic performance and safety optimized handling of the trade-off between specific energy and safety risk can be realized.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Placke, Tobias
|0 0000-0002-2097-5193
|b 1
700 1 _ |a Streipert, Benjamin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Rothermel, Sergej
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wagner, Ralf
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Meister, Paul
|0 P:(DE-Juel1)172048
|b 5
|u fzj
700 1 _ |a Cekic-Laskovic, Isidora
|0 P:(DE-Juel1)171204
|b 6
|u fzj
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 7
|e Corresponding author
|u fzj
773 _ _ |a 10.1149/2.0961712jes
|g Vol. 164, no. 12, p. A2479 - A2486
|0 PERI:(DE-600)2002179-3
|n 12
|p A2479 - A2486
|t Journal of the Electrochemical Society
|v 164
|y 2017
|x 1945-7111
856 4 _ |u https://juser.fz-juelich.de/record/851130/files/J.%20Electrochem.%20Soc.-2017-Kasnatscheew-A2479-86.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851130/files/J.%20Electrochem.%20Soc.-2017-Kasnatscheew-A2479-86.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851130/files/J.%20Electrochem.%20Soc.-2017-Kasnatscheew-A2479-86.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851130/files/J.%20Electrochem.%20Soc.-2017-Kasnatscheew-A2479-86.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851130/files/J.%20Electrochem.%20Soc.-2017-Kasnatscheew-A2479-86.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851130/files/J.%20Electrochem.%20Soc.-2017-Kasnatscheew-A2479-86.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:851130
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171865
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172048
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)171204
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ELECTROCHEM SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21