000851131 001__ 851131
000851131 005__ 20240712113111.0
000851131 0247_ $$2doi$$a10.1021/acs.chemmater.7b01977
000851131 0247_ $$2ISSN$$a0897-4756
000851131 0247_ $$2ISSN$$a1520-5002
000851131 0247_ $$2WOS$$aWOS:000411918900014
000851131 0247_ $$2altmetric$$aaltmetric:25182907
000851131 037__ $$aFZJ-2018-04833
000851131 082__ $$a540
000851131 1001_ $$0P:(DE-HGF)0$$aRöser, Stephan$$b0
000851131 245__ $$aHighly Effective Solid Electrolyte Interphase-Forming Electrolyte Additive Enabling High Voltage Lithium-Ion Batteries
000851131 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2017
000851131 3367_ $$2DRIVER$$aarticle
000851131 3367_ $$2DataCite$$aOutput Types/Journal article
000851131 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534311237_30797
000851131 3367_ $$2BibTeX$$aARTICLE
000851131 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851131 3367_ $$00$$2EndNote$$aJournal Article
000851131 520__ $$aThe electrochemical and thermal stabilities of commonly used LiPF6/organic carbonate-based electrolytes are still a bottleneck for the development of high energy density lithium-ion batteries (LIBs) operating at elevated cell voltage and elevated temperature. The use of intrinsic electrochemically stable electrolyte solvents, e.g. sulfones or dinitriles, has been reported as one approach to enable high voltage LIBs. However, the major challenge of these solvents is related to their poor reductive stability and lack of solid electrolyte interphase (SEI)-forming ability on the graphite electrode. Here, 3-methyl-1,4,2-dioxazol-5-one (MDO) is synthesized and investigated as new highly effective SEI-forming electrolyte additive which can sufficiently suppress electrolyte reduction and graphite exfoliation in propylene carbonate (PC)-based electrolytes. With the addition of only 2 wt % MDO, LiNi0.5Mn0.3Co0.2O2 (NMC532)/graphite full cells containing a 1 M LiPF6 in PC electrolyte reach a cycle life of more than 450 cycles while still having a capacity retention of 80%. In addition, MDO has proven to be oxidatively stable until potentials as high as 5.3 V vs Li/Li+. Further development of MDO and its derivatives as electrolyte additives is a step forward to high voltage stable electrolyte formulations based on alternative electrolyte solvents and high energy density LIBs.
000851131 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000851131 588__ $$aDataset connected to CrossRef
000851131 7001_ $$0P:(DE-HGF)0$$aLerchen, Andreas$$b1
000851131 7001_ $$0P:(DE-HGF)0$$aIbing, Lukas$$b2
000851131 7001_ $$0P:(DE-HGF)0$$aCao, Xia$$b3
000851131 7001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b4
000851131 7001_ $$00000-0002-0648-956X$$aGlorius, Frank$$b5$$eCorresponding author
000851131 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b6$$eCorresponding author$$ufzj
000851131 7001_ $$00000-0002-5801-9260$$aWagner, Ralf$$b7$$eCorresponding author
000851131 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/acs.chemmater.7b01977$$gVol. 29, no. 18, p. 7733 - 7739$$n18$$p7733 - 7739$$tChemistry of materials$$v29$$x1520-5002$$y2017
000851131 8564_ $$uhttps://juser.fz-juelich.de/record/851131/files/acs.chemmater.7b01977.pdf$$yRestricted
000851131 8564_ $$uhttps://juser.fz-juelich.de/record/851131/files/acs.chemmater.7b01977.gif?subformat=icon$$xicon$$yRestricted
000851131 8564_ $$uhttps://juser.fz-juelich.de/record/851131/files/acs.chemmater.7b01977.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000851131 8564_ $$uhttps://juser.fz-juelich.de/record/851131/files/acs.chemmater.7b01977.jpg?subformat=icon-180$$xicon-180$$yRestricted
000851131 8564_ $$uhttps://juser.fz-juelich.de/record/851131/files/acs.chemmater.7b01977.jpg?subformat=icon-640$$xicon-640$$yRestricted
000851131 8564_ $$uhttps://juser.fz-juelich.de/record/851131/files/acs.chemmater.7b01977.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851131 909CO $$ooai:juser.fz-juelich.de:851131$$pVDB
000851131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b4$$kFZJ
000851131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b6$$kFZJ
000851131 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000851131 9141_ $$y2018
000851131 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000851131 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM MATER : 2015
000851131 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851131 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851131 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851131 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851131 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851131 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851131 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851131 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851131 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851131 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000851131 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM MATER : 2015
000851131 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000851131 980__ $$ajournal
000851131 980__ $$aVDB
000851131 980__ $$aI:(DE-Juel1)IEK-12-20141217
000851131 980__ $$aUNRESTRICTED
000851131 981__ $$aI:(DE-Juel1)IMD-4-20141217