000851135 001__ 851135
000851135 005__ 20240712113111.0
000851135 0247_ $$2doi$$a10.1039/C7CP05405J
000851135 0247_ $$2ISSN$$a0005-9021
000851135 0247_ $$2ISSN$$a0372-8323
000851135 0247_ $$2ISSN$$a0372-8382
000851135 0247_ $$2ISSN$$a0940-483X
000851135 0247_ $$2ISSN$$a2367-1491
000851135 0247_ $$2pmid$$apmid:28926044
000851135 0247_ $$2WOS$$aWOS:000412275200011
000851135 0247_ $$2altmetric$$aaltmetric:25177024
000851135 037__ $$aFZJ-2018-04837
000851135 082__ $$a540
000851135 1001_ $$0P:(DE-HGF)0$$aHoltstiege, Florian$$b0
000851135 245__ $$aRunning out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries
000851135 260__ $$aCambridge$$bRSC Publ.$$c2017
000851135 3367_ $$2DRIVER$$aarticle
000851135 3367_ $$2DataCite$$aOutput Types/Journal article
000851135 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534312847_7415
000851135 3367_ $$2BibTeX$$aARTICLE
000851135 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851135 3367_ $$00$$2EndNote$$aJournal Article
000851135 520__ $$aActive lithium loss (ALL) resulting in a capacity loss (QALL), which is caused by lithium consuming parasitic reactions like SEI formation, is a major reason for capacity fading and, thus, for a reduction of the usable energy density of lithium-ion batteries (LIBs). QALL is often equated with the accumulated irreversible capacity (QAIC). However, QAIC is also influenced by non-lithium consuming parasitic reactions, which do not reduce the active lithium content of the cell, but induce a parasitic current. In this work, a novel approach is proposed in order to differentiate between QAIC and QALL. The determination of QALL is based on the remaining active lithium content of a given cell, which can be determined by de-lithiation of the cathode with the help of the reference electrode of a three-electrode set-up. Lithium non-consuming parasitic reactions, which do not influence the active lithium content have no influence on this determination. In order to evaluate this novel approach, three different anode materials (graphite, carbon spheres and a silicon/graphite composite) were investigated. It is shown that during the first charge/discharge cycles QALL is described moderately well by QAIC. However, the difference between QAIC and QALL rises with increasing cycle number. With this approach, a differentiation between “simple” irreversible capacities and truly detrimental “active Li losses” is possible and, thus, Coulombic efficiency can be directly related to the remaining useable cell capacity for the first time. Overall, the exact determination of the remaining active lithium content of the cell is of great importance, because it allows a statement on whether the reduction in lithium content is crucial for capacity fading or whether the fading is related to other degradation mechanisms such as material or electrode failure.
000851135 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000851135 588__ $$aDataset connected to CrossRef
000851135 7001_ $$0P:(DE-HGF)0$$aWilken, Andrea$$b1
000851135 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b2$$eCorresponding author$$ufzj
000851135 7001_ $$00000-0002-2097-5193$$aPlacke, Tobias$$b3$$eCorresponding author
000851135 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C7CP05405J$$gVol. 19, no. 38, p. 25905 - 25918$$n38$$p25905 - 25918$$tPhysical chemistry, chemical physics$$v19$$x1463-9076$$y2017
000851135 8564_ $$uhttps://juser.fz-juelich.de/record/851135/files/c7cp05405j.pdf$$yRestricted
000851135 8564_ $$uhttps://juser.fz-juelich.de/record/851135/files/c7cp05405j.gif?subformat=icon$$xicon$$yRestricted
000851135 8564_ $$uhttps://juser.fz-juelich.de/record/851135/files/c7cp05405j.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000851135 8564_ $$uhttps://juser.fz-juelich.de/record/851135/files/c7cp05405j.jpg?subformat=icon-180$$xicon-180$$yRestricted
000851135 8564_ $$uhttps://juser.fz-juelich.de/record/851135/files/c7cp05405j.jpg?subformat=icon-640$$xicon-640$$yRestricted
000851135 8564_ $$uhttps://juser.fz-juelich.de/record/851135/files/c7cp05405j.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851135 909CO $$ooai:juser.fz-juelich.de:851135$$pVDB
000851135 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b2$$kFZJ
000851135 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000851135 9141_ $$y2018
000851135 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851135 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000851135 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2015
000851135 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851135 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851135 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000851135 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851135 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851135 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851135 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851135 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851135 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851135 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000851135 980__ $$ajournal
000851135 980__ $$aVDB
000851135 980__ $$aI:(DE-Juel1)IEK-12-20141217
000851135 980__ $$aUNRESTRICTED
000851135 981__ $$aI:(DE-Juel1)IMD-4-20141217