000851137 001__ 851137
000851137 005__ 20240712113112.0
000851137 0247_ $$2doi$$a10.1039/C7RA08599K
000851137 0247_ $$2Handle$$a2128/19597
000851137 0247_ $$2WOS$$aWOS:000412451500054
000851137 037__ $$aFZJ-2018-04839
000851137 082__ $$a540
000851137 1001_ $$0P:(DE-HGF)0$$aHorsthemke, Fabian$$b0
000851137 245__ $$aFast screening method to characterize lithium ion battery electrolytes by means of solid phase microextraction – gas chromatography – mass spectrometry
000851137 260__ $$aLondon$$bRSC Publishing$$c2017
000851137 3367_ $$2DRIVER$$aarticle
000851137 3367_ $$2DataCite$$aOutput Types/Journal article
000851137 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534314538_7179
000851137 3367_ $$2BibTeX$$aARTICLE
000851137 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851137 3367_ $$00$$2EndNote$$aJournal Article
000851137 520__ $$aSeveral electrolytes of commercially available lithium ion batteries (LIBs) were analyzed by solid phase microextraction – gas chromatography – mass spectrometry (SPME-GC-MS). The uptake and subsequent injection of the conducting salt LiPF6 into the GC system was prevented by using a headspace SPME setup. Thus, a removal step prior to the GC-MS measurements was not necessary and it was possible to analyze the untreated electrolyte without injecting the hazardous LiPF6 into the GC system. Furthermore, all SPME experiments were carried out at room temperature to exclude further thermal alteration of the electrolyte during sampling. In LIB electrolytes, different linear and cyclic carbonate solvents and additives such as succinonitrile (SN) and fluoroethylene carbonate (FEC) could be identified using the SPME-GC-MS setup. Moreover, the aging products dimethyl-2,5-dioxahexane dicarboxylate (DMDOHC) and ethylmethyl-2,5-dioxahexane dicarboxylate (EMDOHC) were identified in the electrolyte of aged 18[thin space (1/6-em)]650-type cells. In the case of the cells of one specific supplier, various additional hydrocarbons were detected via SPME-GC-MS. These compounds could not be obtained when a GC-MS setup with conventional liquid or headspace injection is used. Consecutive experiments were carried out by extracting the electrolyte components directly from the headspace above anode, separator and cathode of an aged 18[thin space (1/6-em)]650-type cell, which confirmed the findings of the prior analysis of pure electrolytes. Within this work it was possible to develop a method for the investigation of LIB electrolytes and their decomposition products with high sensitivity and low GC column bleeding.
000851137 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000851137 588__ $$aDataset connected to CrossRef
000851137 7001_ $$0P:(DE-HGF)0$$aFriesen, Alex$$b1
000851137 7001_ $$0P:(DE-HGF)0$$aMönnighoff, Xaver$$b2
000851137 7001_ $$0P:(DE-HGF)0$$aStenzel, Yannick P.$$b3
000851137 7001_ $$0P:(DE-HGF)0$$aGrützke, Martin$$b4
000851137 7001_ $$0P:(DE-HGF)0$$aAndersson, Jan T.$$b5
000851137 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b6$$ufzj
000851137 7001_ $$00000-0003-1508-6073$$aNowak, Sascha$$b7$$eCorresponding author
000851137 773__ $$0PERI:(DE-600)2623224-8$$a10.1039/C7RA08599K$$gVol. 7, no. 74, p. 46989 - 46998$$n74$$p46989 - 46998$$tRSC Advances$$v7$$x2046-2069$$y2017
000851137 8564_ $$uhttps://juser.fz-juelich.de/record/851137/files/c7ra08599k.pdf$$yOpenAccess
000851137 8564_ $$uhttps://juser.fz-juelich.de/record/851137/files/c7ra08599k.gif?subformat=icon$$xicon$$yOpenAccess
000851137 8564_ $$uhttps://juser.fz-juelich.de/record/851137/files/c7ra08599k.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000851137 8564_ $$uhttps://juser.fz-juelich.de/record/851137/files/c7ra08599k.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000851137 8564_ $$uhttps://juser.fz-juelich.de/record/851137/files/c7ra08599k.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000851137 8564_ $$uhttps://juser.fz-juelich.de/record/851137/files/c7ra08599k.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000851137 909CO $$ooai:juser.fz-juelich.de:851137$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000851137 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b6$$kFZJ
000851137 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000851137 9141_ $$y2018
000851137 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000851137 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851137 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRSC ADV : 2015
000851137 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851137 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851137 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851137 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000851137 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851137 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000851137 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851137 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851137 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000851137 9801_ $$aFullTexts
000851137 980__ $$ajournal
000851137 980__ $$aVDB
000851137 980__ $$aUNRESTRICTED
000851137 980__ $$aI:(DE-Juel1)IEK-12-20141217
000851137 981__ $$aI:(DE-Juel1)IMD-4-20141217