000851139 001__ 851139 000851139 005__ 20240712113112.0 000851139 0247_ $$2doi$$a10.1016/j.jpowsour.2017.10.058 000851139 0247_ $$2ISSN$$a0378-7753 000851139 0247_ $$2ISSN$$a1873-2755 000851139 0247_ $$2WOS$$aWOS:000418392100033 000851139 037__ $$aFZJ-2018-04841 000851139 082__ $$a620 000851139 1001_ $$0P:(DE-HGF)0$$aDagger, Tim$$b0 000851139 245__ $$aInvestigation of lithium ion battery electrolytes containing flame retardants in combination with the film forming electrolyte additives vinylene carbonate, vinyl ethylene carbonate and fluoroethylene carbonate 000851139 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017 000851139 3367_ $$2DRIVER$$aarticle 000851139 3367_ $$2DataCite$$aOutput Types/Journal article 000851139 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534315520_21736 000851139 3367_ $$2BibTeX$$aARTICLE 000851139 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000851139 3367_ $$00$$2EndNote$$aJournal Article 000851139 520__ $$aIn order to address the trade-off between the safety lithium ion battery (LIB) electrolytes and their electrochemical performance, synergetic effects of flame retardant additives (FRs) in combination with film forming additives (FFAs) are investigated. Triphenyl phosphate (TPP) and a silicon-containing additive (WA) are applied as FRs to improve the onset temperature of the thermal runaway of a LIB standard electrolyte (LP57: 1 M LiPF6 in EC:EMC 3:7) about 15 K and 28 K, respectively. The application of the FRs in MCMB graphite/lithium metal and NMC111/lithium metal three-electrode cells induces insufficiencies in terms of charge/discharge cycling stability and rate capability.It is investigated if the addition of FFAs can degrade the insufficiencies that are induced by the FRs. Vinylene carbonate, vinyl ethylene carbonate and fluoroethylene carbonate are added to a mixture of LP57 with 10% FR to enhance the cycling performance via improved interphase formation. Results reveal, that the rate capability of cells containing TPP or WA is especially improved by addition of 2% or 5% FEC, respectively.Postmortem analyses of the electrodes by SEM and of the electrolyte by GC-MS are performed. Direct correlations between the cycling behavior during the C-rate study and the electrolyte decomposition products are drawn. 000851139 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000851139 588__ $$aDataset connected to CrossRef 000851139 7001_ $$0P:(DE-HGF)0$$aGrützke, Martin$$b1 000851139 7001_ $$0P:(DE-HGF)0$$aReichert, Matthias$$b2 000851139 7001_ $$0P:(DE-HGF)0$$aHaetge, Jan$$b3 000851139 7001_ $$0P:(DE-HGF)0$$aNowak, Sascha$$b4 000851139 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b5$$eCorresponding author$$ufzj 000851139 7001_ $$00000-0002-3743-8837$$aSchappacher, Falko M.$$b6$$eCorresponding author 000851139 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2017.10.058$$gVol. 372, p. 276 - 285$$p276 - 285$$tJournal of power sources$$v372$$x0378-7753$$y2017 000851139 8564_ $$uhttps://juser.fz-juelich.de/record/851139/files/1-s2.0-S0378775317314015-main.pdf$$yRestricted 000851139 8564_ $$uhttps://juser.fz-juelich.de/record/851139/files/1-s2.0-S0378775317314015-main.gif?subformat=icon$$xicon$$yRestricted 000851139 8564_ $$uhttps://juser.fz-juelich.de/record/851139/files/1-s2.0-S0378775317314015-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000851139 8564_ $$uhttps://juser.fz-juelich.de/record/851139/files/1-s2.0-S0378775317314015-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000851139 8564_ $$uhttps://juser.fz-juelich.de/record/851139/files/1-s2.0-S0378775317314015-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000851139 8564_ $$uhttps://juser.fz-juelich.de/record/851139/files/1-s2.0-S0378775317314015-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000851139 909CO $$ooai:juser.fz-juelich.de:851139$$pVDB 000851139 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b5$$kFZJ 000851139 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000851139 9141_ $$y2018 000851139 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2015 000851139 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000851139 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000851139 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000851139 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000851139 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000851139 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000851139 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000851139 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000851139 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000851139 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000851139 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000851139 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2015 000851139 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 000851139 980__ $$ajournal 000851139 980__ $$aVDB 000851139 980__ $$aI:(DE-Juel1)IEK-12-20141217 000851139 980__ $$aUNRESTRICTED 000851139 981__ $$aI:(DE-Juel1)IMD-4-20141217