000851139 001__ 851139
000851139 005__ 20240712113112.0
000851139 0247_ $$2doi$$a10.1016/j.jpowsour.2017.10.058
000851139 0247_ $$2ISSN$$a0378-7753
000851139 0247_ $$2ISSN$$a1873-2755
000851139 0247_ $$2WOS$$aWOS:000418392100033
000851139 037__ $$aFZJ-2018-04841
000851139 082__ $$a620
000851139 1001_ $$0P:(DE-HGF)0$$aDagger, Tim$$b0
000851139 245__ $$aInvestigation of lithium ion battery electrolytes containing flame retardants in combination with the film forming electrolyte additives vinylene carbonate, vinyl ethylene carbonate and fluoroethylene carbonate
000851139 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000851139 3367_ $$2DRIVER$$aarticle
000851139 3367_ $$2DataCite$$aOutput Types/Journal article
000851139 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534315520_21736
000851139 3367_ $$2BibTeX$$aARTICLE
000851139 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851139 3367_ $$00$$2EndNote$$aJournal Article
000851139 520__ $$aIn order to address the trade-off between the safety lithium ion battery (LIB) electrolytes and their electrochemical performance, synergetic effects of flame retardant additives (FRs) in combination with film forming additives (FFAs) are investigated. Triphenyl phosphate (TPP) and a silicon-containing additive (WA) are applied as FRs to improve the onset temperature of the thermal runaway of a LIB standard electrolyte (LP57: 1 M LiPF6 in EC:EMC 3:7) about 15 K and 28 K, respectively. The application of the FRs in MCMB graphite/lithium metal and NMC111/lithium metal three-electrode cells induces insufficiencies in terms of charge/discharge cycling stability and rate capability.It is investigated if the addition of FFAs can degrade the insufficiencies that are induced by the FRs. Vinylene carbonate, vinyl ethylene carbonate and fluoroethylene carbonate are added to a mixture of LP57 with 10% FR to enhance the cycling performance via improved interphase formation. Results reveal, that the rate capability of cells containing TPP or WA is especially improved by addition of 2% or 5% FEC, respectively.Postmortem analyses of the electrodes by SEM and of the electrolyte by GC-MS are performed. Direct correlations between the cycling behavior during the C-rate study and the electrolyte decomposition products are drawn.
000851139 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000851139 588__ $$aDataset connected to CrossRef
000851139 7001_ $$0P:(DE-HGF)0$$aGrützke, Martin$$b1
000851139 7001_ $$0P:(DE-HGF)0$$aReichert, Matthias$$b2
000851139 7001_ $$0P:(DE-HGF)0$$aHaetge, Jan$$b3
000851139 7001_ $$0P:(DE-HGF)0$$aNowak, Sascha$$b4
000851139 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b5$$eCorresponding author$$ufzj
000851139 7001_ $$00000-0002-3743-8837$$aSchappacher, Falko M.$$b6$$eCorresponding author
000851139 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2017.10.058$$gVol. 372, p. 276 - 285$$p276 - 285$$tJournal of power sources$$v372$$x0378-7753$$y2017
000851139 8564_ $$uhttps://juser.fz-juelich.de/record/851139/files/1-s2.0-S0378775317314015-main.pdf$$yRestricted
000851139 8564_ $$uhttps://juser.fz-juelich.de/record/851139/files/1-s2.0-S0378775317314015-main.gif?subformat=icon$$xicon$$yRestricted
000851139 8564_ $$uhttps://juser.fz-juelich.de/record/851139/files/1-s2.0-S0378775317314015-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000851139 8564_ $$uhttps://juser.fz-juelich.de/record/851139/files/1-s2.0-S0378775317314015-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000851139 8564_ $$uhttps://juser.fz-juelich.de/record/851139/files/1-s2.0-S0378775317314015-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000851139 8564_ $$uhttps://juser.fz-juelich.de/record/851139/files/1-s2.0-S0378775317314015-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851139 909CO $$ooai:juser.fz-juelich.de:851139$$pVDB
000851139 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b5$$kFZJ
000851139 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000851139 9141_ $$y2018
000851139 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2015
000851139 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851139 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851139 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000851139 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851139 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851139 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851139 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851139 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851139 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851139 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851139 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000851139 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2015
000851139 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000851139 980__ $$ajournal
000851139 980__ $$aVDB
000851139 980__ $$aI:(DE-Juel1)IEK-12-20141217
000851139 980__ $$aUNRESTRICTED
000851139 981__ $$aI:(DE-Juel1)IMD-4-20141217