000851169 001__ 851169
000851169 005__ 20240712113112.0
000851169 0247_ $$2doi$$a10.1016/j.electacta.2017.12.099
000851169 0247_ $$2WOS$$aWOS:000419831600058
000851169 037__ $$aFZJ-2018-04869
000851169 082__ $$a540
000851169 1001_ $$0P:(DE-HGF)0$$aHeckmann, A$$b0
000851169 245__ $$aTowards high-performance dual-graphite batteries using highly concentrated organic electrolytes
000851169 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000851169 3367_ $$2DRIVER$$aarticle
000851169 3367_ $$2DataCite$$aOutput Types/Journal article
000851169 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534316184_29009
000851169 3367_ $$2BibTeX$$aARTICLE
000851169 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851169 3367_ $$00$$2EndNote$$aJournal Article
000851169 520__ $$aDual-ion batteries (DIBs) and dual-graphite batteries (DGBs) attract increasing attention as an alternative approach for stationary energy storage due to their environmental, cost and safety benefits over other state-of-the-art battery technologies. In order to realize an extraordinary cell performance of DGBs, it is of particular importance to stabilize the interphases between electrolyte and electrode, for both the negative and positive electrodes. In this work, we present the implementation of highly concentrated electrolytes (HCEs) in DIBs and DGBs, i.e. electrolyte formulations based on either LiPF6 or LiTFSI in dimethyl carbonate (DMC), diethyl carbonate (DEC) or ethyl methyl carbonate (EMC). A reversible cycling stability of the graphitic negative electrode is proven as well as the stability of the HCEs against oxidative decomposition at the positive electrode at a cathode potential of 5V vs. Li/Li+. Additionally, we demonstrate that the anodic dissolution of the aluminum (Al) current collector is successfully suppressed by using LiTFSI-based HCEs, which show a comparable resistivity against Al dissolution as LiPF6-based electrolytes. Furthermore, a strong dependence of concentration and onset potential of anion intercalation is observed and comprehensively discussed with respect to the thermodynamic environment of the electrolyte. Overall, the use of HCEs enables a highly reversible cycling stability, providing extraordinary high specific discharge capacities of 80–100 mAh g−1 for lithium metal-based DIBs and DGBs. The evaluation of voltage efficiency (VE) and energy efficiency (EE) reveals the highest values for the EMC/LiPF6-based electrolyte, i.e. 96% (VE) and 95% (EE). In summary, the use of HCEs is a promising strategy to further optimize the electrochemical performance of DIBs and DGBs in terms of high reversible capacity and cycling stability and decreased parasitic side reactions.
000851169 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000851169 7001_ $$0P:(DE-HGF)0$$aThienenkamp, J$$b1
000851169 7001_ $$0P:(DE-HGF)0$$aBeltrop, K$$b2
000851169 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b3$$eCorresponding author$$ufzj
000851169 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b4$$ufzj
000851169 7001_ $$0P:(DE-HGF)0$$aPlacke, T$$b5$$eCorresponding author
000851169 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2017.12.099$$p514-525$$tElectrochimica acta$$v260$$x0013-4686$$y2018
000851169 8564_ $$uhttps://juser.fz-juelich.de/record/851169/files/1-s2.0-S0013468617326622-main.pdf$$yRestricted
000851169 8564_ $$uhttps://juser.fz-juelich.de/record/851169/files/1-s2.0-S0013468617326622-main.gif?subformat=icon$$xicon$$yRestricted
000851169 8564_ $$uhttps://juser.fz-juelich.de/record/851169/files/1-s2.0-S0013468617326622-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000851169 8564_ $$uhttps://juser.fz-juelich.de/record/851169/files/1-s2.0-S0013468617326622-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000851169 8564_ $$uhttps://juser.fz-juelich.de/record/851169/files/1-s2.0-S0013468617326622-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000851169 8564_ $$uhttps://juser.fz-juelich.de/record/851169/files/1-s2.0-S0013468617326622-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851169 909CO $$ooai:juser.fz-juelich.de:851169$$pVDB
000851169 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ
000851169 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b4$$kFZJ
000851169 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000851169 9141_ $$y2018
000851169 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000851169 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2015
000851169 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851169 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851169 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000851169 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851169 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851169 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851169 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851169 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851169 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851169 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851169 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851169 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000851169 980__ $$ajournal
000851169 980__ $$aVDB
000851169 980__ $$aI:(DE-Juel1)IEK-12-20141217
000851169 980__ $$aUNRESTRICTED
000851169 981__ $$aI:(DE-Juel1)IMD-4-20141217