000851170 001__ 851170
000851170 005__ 20240712113112.0
000851170 0247_ $$2doi$$a10.1016/j.jpowsour.2017.12.069
000851170 0247_ $$2WOS$$aWOS:000427316300060
000851170 037__ $$aFZJ-2018-04870
000851170 082__ $$a620
000851170 1001_ $$0P:(DE-HGF)0$$aHoltstiege, F$$b0
000851170 245__ $$aNew insights into pre-lithiation kinetics of graphite anodes via nuclear magnetic resonance spectroscopy
000851170 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000851170 3367_ $$2DRIVER$$aarticle
000851170 3367_ $$2DataCite$$aOutput Types/Journal article
000851170 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534316313_1034
000851170 3367_ $$2BibTeX$$aARTICLE
000851170 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851170 3367_ $$00$$2EndNote$$aJournal Article
000851170 520__ $$aPre-lithiation of anode materials can be an effective method to compensate active lithium loss which mainly occurs in the first few cycles of a lithium ion battery (LIB), due to electrolyte decomposition and solid electrolyte interphase (SEI) formation at the surface of the anode. There are many different pre-lithiation methods, whereas pre-lithiation using metallic lithium constitutes the most convenient and widely utilized lab procedure in literature. In this work, for the first time, solid state nuclear magnetic resonance spectroscopy (NMR) is applied to monitor the reaction kinetics of the pre-lithiation process of graphite with lithium. Based on static 7Li NMR, we can directly observe both the dissolution of lithium metal and parallel formation of LiCx species in the obtained NMR spectra with time. It is also shown that the degree of pre-lithiation as well as distribution of lithium metal on the electrode surface have a strong impact on the reaction kinetics of the pre-lithiation process and on the remaining amount of lithium metal. Overall, our findings are highly important for further optimization of pre-lithiation methods for LIB anode materials, both in terms of optimized pre-lithiation time and appropriate amounts of lithium metal.
000851170 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000851170 7001_ $$0P:(DE-HGF)0$$aSchmuch, R$$b1
000851170 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b2$$ufzj
000851170 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b3$$eCorresponding author$$ufzj
000851170 7001_ $$0P:(DE-HGF)0$$aPlacke, T$$b4$$eCorresponding author
000851170 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2017.12.069$$p522-526$$tJournal of power sources$$v378$$x0378-7753$$y2018
000851170 8564_ $$uhttps://juser.fz-juelich.de/record/851170/files/1-s2.0-S0378775317316786-main.pdf$$yRestricted
000851170 8564_ $$uhttps://juser.fz-juelich.de/record/851170/files/1-s2.0-S0378775317316786-main.gif?subformat=icon$$xicon$$yRestricted
000851170 8564_ $$uhttps://juser.fz-juelich.de/record/851170/files/1-s2.0-S0378775317316786-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000851170 8564_ $$uhttps://juser.fz-juelich.de/record/851170/files/1-s2.0-S0378775317316786-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000851170 8564_ $$uhttps://juser.fz-juelich.de/record/851170/files/1-s2.0-S0378775317316786-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000851170 8564_ $$uhttps://juser.fz-juelich.de/record/851170/files/1-s2.0-S0378775317316786-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851170 909CO $$ooai:juser.fz-juelich.de:851170$$pVDB
000851170 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b2$$kFZJ
000851170 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b3$$kFZJ
000851170 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000851170 9141_ $$y2018
000851170 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2015
000851170 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851170 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851170 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000851170 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851170 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851170 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851170 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851170 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851170 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851170 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851170 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000851170 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2015
000851170 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000851170 980__ $$ajournal
000851170 980__ $$aVDB
000851170 980__ $$aI:(DE-Juel1)IEK-12-20141217
000851170 980__ $$aUNRESTRICTED
000851170 981__ $$aI:(DE-Juel1)IMD-4-20141217