001     851170
005     20240712113112.0
024 7 _ |a 10.1016/j.jpowsour.2017.12.069
|2 doi
024 7 _ |a WOS:000427316300060
|2 WOS
037 _ _ |a FZJ-2018-04870
082 _ _ |a 620
100 1 _ |a Holtstiege, F
|0 P:(DE-HGF)0
|b 0
245 _ _ |a New insights into pre-lithiation kinetics of graphite anodes via nuclear magnetic resonance spectroscopy
260 _ _ |a New York, NY [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1534316313_1034
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Pre-lithiation of anode materials can be an effective method to compensate active lithium loss which mainly occurs in the first few cycles of a lithium ion battery (LIB), due to electrolyte decomposition and solid electrolyte interphase (SEI) formation at the surface of the anode. There are many different pre-lithiation methods, whereas pre-lithiation using metallic lithium constitutes the most convenient and widely utilized lab procedure in literature. In this work, for the first time, solid state nuclear magnetic resonance spectroscopy (NMR) is applied to monitor the reaction kinetics of the pre-lithiation process of graphite with lithium. Based on static 7Li NMR, we can directly observe both the dissolution of lithium metal and parallel formation of LiCx species in the obtained NMR spectra with time. It is also shown that the degree of pre-lithiation as well as distribution of lithium metal on the electrode surface have a strong impact on the reaction kinetics of the pre-lithiation process and on the remaining amount of lithium metal. Overall, our findings are highly important for further optimization of pre-lithiation methods for LIB anode materials, both in terms of optimized pre-lithiation time and appropriate amounts of lithium metal.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
700 1 _ |a Schmuch, R
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 2
|u fzj
700 1 _ |a Brunklaus, Gunther
|0 P:(DE-Juel1)172047
|b 3
|e Corresponding author
|u fzj
700 1 _ |a Placke, T
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1016/j.jpowsour.2017.12.069
|0 PERI:(DE-600)1491915-1
|p 522-526
|t Journal of power sources
|v 378
|y 2018
|x 0378-7753
856 4 _ |u https://juser.fz-juelich.de/record/851170/files/1-s2.0-S0378775317316786-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851170/files/1-s2.0-S0378775317316786-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851170/files/1-s2.0-S0378775317316786-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851170/files/1-s2.0-S0378775317316786-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851170/files/1-s2.0-S0378775317316786-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851170/files/1-s2.0-S0378775317316786-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:851170
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172047
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2015
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21