000851171 001__ 851171
000851171 005__ 20240712113112.0
000851171 0247_ $$2doi$$a10.1149/2.0361802jes
000851171 0247_ $$2Handle$$a2128/19598
000851171 0247_ $$2WOS$$aWOS:000431786800014
000851171 037__ $$aFZJ-2018-04871
000851171 082__ $$a540
000851171 1001_ $$0P:(DE-HGF)0$$aHildebrand, S$$b0$$eCorresponding author
000851171 245__ $$aThermal analysis of LiNi0.4Co0.2Mn0.4O2/mesocarbon microbeads cells and electrodes: State-of-charge and state-of-health influences on reaction kinetics
000851171 260__ $$aPennington, NJ$$bElectrochemical Soc.$$c2018
000851171 3367_ $$2DRIVER$$aarticle
000851171 3367_ $$2DataCite$$aOutput Types/Journal article
000851171 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534317641_7179
000851171 3367_ $$2BibTeX$$aARTICLE
000851171 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851171 3367_ $$00$$2EndNote$$aJournal Article
000851171 520__ $$aThe thermal stability of lithium ion batteries was studied by means of Accelerating Rate Calorimetry in Heat-Wait-Search operation on both electrode and cell level. Fresh and aged samples were investigated depending on the state-of-charge (SoC) of a 5 Ah pouch cell comprising mesocarbon microbeads and LiNi0.4Co0.2Mn0.4O2 as the anode and cathode materials. 1 M LiPF6 in EC:DEC 3:7 (by weight) containing 2 wt% VC and 0.5 wt% LiBOB was chosen as the electrolyte. Measurements on the electrode level revealed a higher self-heating rate (SHR) of the cathode compared to the anode for all SoC and state-of-health (SoH) combinations in the temperature range where a self-sustaining decomposition reaction could be detected. A lower SoC showed a lower SHR of the electrode/electrolyte mixture with no reaction detected on the anode side ≤ 50% cell SoC. Cyclic aging led to a decrease in thermal stability of the cathode at lower SoC values with no significant influence on the anode implying a larger safety threat on the cell level. Avrami-Erofeev and autocatalytic reaction models were used to quantify the influences of SoC and SoH on reaction kinetics. Full cell measurements confirmed the observations at a higher SHR.
000851171 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000851171 7001_ $$0P:(DE-HGF)0$$aRheinfeld, A.$$b1$$eCorresponding author
000851171 7001_ $$0P:(DE-HGF)0$$aFriesen, A$$b2
000851171 7001_ $$0P:(DE-HGF)0$$aHaetge, J$$b3
000851171 7001_ $$0P:(DE-HGF)0$$aSchappacher, F. M$$b4
000851171 7001_ $$0P:(DE-HGF)0$$aJossen, A$$b5
000851171 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b6$$eCorresponding author$$ufzj
000851171 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/2.0361802jes$$pA104-A117$$tJournal of the Electrochemical Society$$v165$$x0013-4651$$y2018
000851171 8564_ $$uhttps://juser.fz-juelich.de/record/851171/files/J.%20Electrochem.%20Soc.-2018-Hildebrand-A104-17.pdf$$yOpenAccess
000851171 8564_ $$uhttps://juser.fz-juelich.de/record/851171/files/J.%20Electrochem.%20Soc.-2018-Hildebrand-A104-17.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000851171 8564_ $$uhttps://juser.fz-juelich.de/record/851171/files/J.%20Electrochem.%20Soc.-2018-Hildebrand-A104-17.gif?subformat=icon$$xicon$$yOpenAccess
000851171 8564_ $$uhttps://juser.fz-juelich.de/record/851171/files/J.%20Electrochem.%20Soc.-2018-Hildebrand-A104-17.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000851171 8564_ $$uhttps://juser.fz-juelich.de/record/851171/files/J.%20Electrochem.%20Soc.-2018-Hildebrand-A104-17.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000851171 8564_ $$uhttps://juser.fz-juelich.de/record/851171/files/J.%20Electrochem.%20Soc.-2018-Hildebrand-A104-17.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000851171 909CO $$ooai:juser.fz-juelich.de:851171$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000851171 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b6$$kFZJ
000851171 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000851171 9141_ $$y2018
000851171 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851171 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000851171 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000851171 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2015
000851171 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851171 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851171 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851171 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851171 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000851171 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851171 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851171 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851171 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000851171 9801_ $$aFullTexts
000851171 980__ $$ajournal
000851171 980__ $$aVDB
000851171 980__ $$aUNRESTRICTED
000851171 980__ $$aI:(DE-Juel1)IEK-12-20141217
000851171 981__ $$aI:(DE-Juel1)IMD-4-20141217