001     851171
005     20240712113112.0
024 7 _ |a 10.1149/2.0361802jes
|2 doi
024 7 _ |a 2128/19598
|2 Handle
024 7 _ |a WOS:000431786800014
|2 WOS
037 _ _ |a FZJ-2018-04871
082 _ _ |a 540
100 1 _ |a Hildebrand, S
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Thermal analysis of LiNi0.4Co0.2Mn0.4O2/mesocarbon microbeads cells and electrodes: State-of-charge and state-of-health influences on reaction kinetics
260 _ _ |a Pennington, NJ
|c 2018
|b Electrochemical Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1534317641_7179
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The thermal stability of lithium ion batteries was studied by means of Accelerating Rate Calorimetry in Heat-Wait-Search operation on both electrode and cell level. Fresh and aged samples were investigated depending on the state-of-charge (SoC) of a 5 Ah pouch cell comprising mesocarbon microbeads and LiNi0.4Co0.2Mn0.4O2 as the anode and cathode materials. 1 M LiPF6 in EC:DEC 3:7 (by weight) containing 2 wt% VC and 0.5 wt% LiBOB was chosen as the electrolyte. Measurements on the electrode level revealed a higher self-heating rate (SHR) of the cathode compared to the anode for all SoC and state-of-health (SoH) combinations in the temperature range where a self-sustaining decomposition reaction could be detected. A lower SoC showed a lower SHR of the electrode/electrolyte mixture with no reaction detected on the anode side ≤ 50% cell SoC. Cyclic aging led to a decrease in thermal stability of the cathode at lower SoC values with no significant influence on the anode implying a larger safety threat on the cell level. Avrami-Erofeev and autocatalytic reaction models were used to quantify the influences of SoC and SoH on reaction kinetics. Full cell measurements confirmed the observations at a higher SHR.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
700 1 _ |a Rheinfeld, A.
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Friesen, A
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Haetge, J
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schappacher, F. M
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Jossen, A
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 6
|e Corresponding author
|u fzj
773 _ _ |a 10.1149/2.0361802jes
|0 PERI:(DE-600)2002179-3
|p A104-A117
|t Journal of the Electrochemical Society
|v 165
|y 2018
|x 0013-4651
856 4 _ |u https://juser.fz-juelich.de/record/851171/files/J.%20Electrochem.%20Soc.-2018-Hildebrand-A104-17.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/851171/files/J.%20Electrochem.%20Soc.-2018-Hildebrand-A104-17.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/851171/files/J.%20Electrochem.%20Soc.-2018-Hildebrand-A104-17.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/851171/files/J.%20Electrochem.%20Soc.-2018-Hildebrand-A104-17.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/851171/files/J.%20Electrochem.%20Soc.-2018-Hildebrand-A104-17.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/851171/files/J.%20Electrochem.%20Soc.-2018-Hildebrand-A104-17.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:851171
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ELECTROCHEM SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21