000851173 001__ 851173 000851173 005__ 20240712113112.0 000851173 0247_ $$2doi$$a10.3390/en11010150 000851173 0247_ $$2Handle$$a2128/19599 000851173 0247_ $$2WOS$$aWOS:000424397600150 000851173 0247_ $$2altmetric$$aaltmetric:32280754 000851173 037__ $$aFZJ-2018-04873 000851173 082__ $$a620 000851173 1001_ $$0P:(DE-HGF)0$$aCerdas, Felipe$$b0$$eCorresponding author 000851173 245__ $$aExploring the Effect of Increased Energy Density on the Environmental Impacts of Traction Batteries: A Comparison of Energy Optimized Lithium-Ion and Lithium-Sulfur Batteries for Mobility Applications 000851173 260__ $$aBasel$$bMDPI$$c2018 000851173 3367_ $$2DRIVER$$aarticle 000851173 3367_ $$2DataCite$$aOutput Types/Journal article 000851173 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534317833_29998 000851173 3367_ $$2BibTeX$$aARTICLE 000851173 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000851173 3367_ $$00$$2EndNote$$aJournal Article 000851173 520__ $$aThe quest towards increasing the energy density of traction battery technologies has led to the emergence and diversification of battery materials. The lithium sulfur battery (LSB) is in this regard a promising material for batteries due to its specific energy. However, due to its low volumetric energy density, the LSB faces challenges in mobility applications such as electric vehicles but also other transportation modes. To understand the potential environmental implication of LSB batteries, a comparative Life Cycle Assessment (LCA) was performed. For this study, electrodes for both an NMC111 with an anode graphite and a LSB battery cell with a lithium metal foil as anode were manufactured. Data from disassembly experiments performed on a real battery system for a mid-size passenger vehicle were used to build the required life cycle inventory. The energy consumption during the use phase was calculated using a simulative approach. A set of thirteen impact categories was evaluated and characterized with the ReCiPe methodology. The results of the LCA in this study allow identification of the main sources of environmental problems as well as possible strategies to improve the environmental impact of LSB batteries. In this regard, the high requirements of N-Methyl-2-pyrrolidone (NMP) for the processing of the sulfur cathode and the thickness of the lithium foil were identified as the most important drivers. We make recommendations for necessary further research in order to broaden the understanding concerning the potential environmental implication of the implementation of LSB batteries for mobility applications. 000851173 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000851173 588__ $$aDataset connected to CrossRef 000851173 7001_ $$0P:(DE-HGF)0$$aTitscher, Paul$$b1 000851173 7001_ $$0P:(DE-HGF)0$$aBognar, Nicolas$$b2 000851173 7001_ $$0P:(DE-HGF)0$$aSchmuch, Richard$$b3 000851173 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4$$ufzj 000851173 7001_ $$0P:(DE-HGF)0$$aKwade, Arno$$b5 000851173 7001_ $$00000-0002-5621-1822$$aHerrmann, Christoph$$b6 000851173 773__ $$0PERI:(DE-600)2437446-5$$a10.3390/en11010150$$gVol. 11, no. 1, p. 150 -$$n1$$p150 -$$tEnergies$$v11$$x1996-1073$$y2018 000851173 8564_ $$uhttps://juser.fz-juelich.de/record/851173/files/energies-11-00150.pdf$$yOpenAccess 000851173 8564_ $$uhttps://juser.fz-juelich.de/record/851173/files/energies-11-00150.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000851173 8564_ $$uhttps://juser.fz-juelich.de/record/851173/files/energies-11-00150.gif?subformat=icon$$xicon$$yOpenAccess 000851173 8564_ $$uhttps://juser.fz-juelich.de/record/851173/files/energies-11-00150.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000851173 8564_ $$uhttps://juser.fz-juelich.de/record/851173/files/energies-11-00150.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000851173 8564_ $$uhttps://juser.fz-juelich.de/record/851173/files/energies-11-00150.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000851173 909CO $$ooai:juser.fz-juelich.de:851173$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000851173 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ 000851173 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000851173 9141_ $$y2018 000851173 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000851173 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000851173 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000851173 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000851173 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGIES : 2015 000851173 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000851173 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000851173 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000851173 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000851173 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000851173 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000851173 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000851173 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000851173 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 000851173 9801_ $$aFullTexts 000851173 980__ $$ajournal 000851173 980__ $$aVDB 000851173 980__ $$aUNRESTRICTED 000851173 980__ $$aI:(DE-Juel1)IEK-12-20141217 000851173 981__ $$aI:(DE-Juel1)IMD-4-20141217