001     851186
005     20220930130156.0
024 7 _ |a 10.1038/s41535-018-0116-1
|2 doi
024 7 _ |a 2128/19736
|2 Handle
024 7 _ |a WOS:000449705100001
|2 WOS
024 7 _ |a altmetric:48699113
|2 altmetric
037 _ _ |a FZJ-2018-04886
082 _ _ |a 530
100 1 _ |a Lüpke, Felix
|0 P:(DE-Juel1)162163
|b 0
245 _ _ |a In situ disentangling surface state transport channels of a topological insulator thin film by gating
260 _ _ |a [London]
|c 2018
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1538059302_32592
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In the thin film limit, the surface state of a three-dimensional topological insulator gives rise to two parallel conduction channels at the top and bottom surface of the film, which are difficult to disentangle in transport experiments. Here, we present gate-dependent multi-tip scanning tunneling microscope transport measurements combined with photoemission experiments all performed in situ on pristine BiSbTe3 thin films. To analyze the data, we develop a generic transport model including quantum capacitance effects. This approach allows us to quantify the gate-dependent conductivities, charge carrier concentrations, and mobilities for all relevant transport channels of three-dimensional topological insulator thin films (i.e., the two topological surface state channels, as well as the interior of the film). For the present sample, we find that the conductivity in the bottom surface state channel is minimized below a gate voltage of Vgate = −34 V and the top surface state channel dominates the transport through the film.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Just, Sven
|0 P:(DE-Juel1)162164
|b 1
700 1 _ |a Eschbach, Markus
|0 P:(DE-Juel1)145534
|b 2
700 1 _ |a Heider, Tristan
|0 P:(DE-Juel1)165229
|b 3
700 1 _ |a Młyńczak, Ewa
|0 P:(DE-Juel1)161379
|b 4
700 1 _ |a Lanius, Martin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Schüffelgen, Peter
|0 P:(DE-Juel1)165984
|b 6
700 1 _ |a Rosenbach, Daniel
|0 P:(DE-Juel1)167347
|b 7
700 1 _ |a von den Driesch, Nils
|0 P:(DE-Juel1)161247
|b 8
700 1 _ |a Cherepanov, Vasily
|0 P:(DE-Juel1)128762
|b 9
700 1 _ |a Mussler, Gregor
|0 P:(DE-Juel1)128617
|b 10
700 1 _ |a Plucinski, Lukasz
|0 P:(DE-Juel1)130895
|b 11
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 12
700 1 _ |a Schneider, Claus M.
|0 P:(DE-Juel1)130948
|b 13
700 1 _ |a Tautz, F. Stefan
|0 P:(DE-Juel1)128791
|b 14
700 1 _ |a Voigtländer, Bert
|0 P:(DE-Juel1)128794
|b 15
|e Corresponding author
773 _ _ |a 10.1038/s41535-018-0116-1
|g Vol. 3, no. 1, p. 46
|0 PERI:(DE-600)2882263-8
|n 1
|p 46
|t npj quantum materials
|v 3
|y 2018
|x 2397-4648
856 4 _ |u https://juser.fz-juelich.de/record/851186/files/30034721300008165214INVOIC2676115076001%20%28002%29.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/851186/files/30034721300008165214INVOIC2676115076001%20%28002%29.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/851186/files/30034721300008165214INVOIC2676115076001%20%28002%29.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/851186/files/30034721300008165214INVOIC2676115076001%20%28002%29.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/851186/files/30034721300008165214INVOIC2676115076001%20%28002%29.jpg?subformat=icon-640
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/851186/files/30034721300008165214INVOIC2676115076001%20%28002%29.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/851186/files/s41535-018-0116-1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/851186/files/s41535-018-0116-1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:851186
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162163
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162164
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165229
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161379
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)165984
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)167347
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)161247
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)128762
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)128617
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)130895
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)130948
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)128791
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)128794
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Funktionale Nanostrukturen an Oberflächen
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 2
920 1 _ |0 I:(DE-Juel1)VDB1045
|k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|x 3
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21