000851198 001__ 851198
000851198 005__ 20240712113113.0
000851198 0247_ $$2doi$$a10.1021/acsmacrolett.8b00406
000851198 0247_ $$2WOS$$aWOS:000439398500021
000851198 0247_ $$2altmetric$$aaltmetric:46692550
000851198 037__ $$aFZJ-2018-04898
000851198 082__ $$a540
000851198 1001_ $$0P:(DE-Juel1)168275$$aImholt, Laura$$b0$$ufzj
000851198 245__ $$aSupramolecular Self-Assembly of Methylated Rotaxanes for Solid Polymer Electrolyte Application
000851198 260__ $$aWashington, DC$$bACS$$c2018
000851198 3367_ $$2DRIVER$$aarticle
000851198 3367_ $$2DataCite$$aOutput Types/Journal article
000851198 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534399362_22913
000851198 3367_ $$2BibTeX$$aARTICLE
000851198 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851198 3367_ $$00$$2EndNote$$aJournal Article
000851198 520__ $$aLi+-conducting solid polymer electrolytes (SPEs) obtained from supramolecular self-assembly of trimethylated cyclodextrin (TMCD), poly(ethylene oxide) (PEO), and lithium salt are investigated for application in lithium-metal batteries (LMBs) and lithium-ion batteries (LIBs). The considered electrolytes comprise nanochannels for fast lithium-ion transport formed by CD threaded on PEO chains. It is demonstrated that tailored modification of CD beneficially influences the structure and transport properties of solid polymer electrolytes, thereby enabling their application in LMBs. Molecular dynamics (MD) simulation and experimental data reveal that modification of CDs shifts the steady state between lithium ions inside and outside the channels, in this way improving the achievable ionic conductivity. Notably, the designed SPEs facilitated galvanostatic cycling in LMBs at fast charging and discharging rates for more than 200 cycles and high Coulombic efficiency.
000851198 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000851198 588__ $$aDataset connected to CrossRef
000851198 7001_ $$00000-0002-3381-3425$$aDong, Dengpan$$b1
000851198 7001_ $$00000-0002-3884-3308$$aBedrov, Dmitry$$b2
000851198 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b3$$ufzj
000851198 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4$$eCorresponding author$$ufzj
000851198 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b5$$eCorresponding author
000851198 773__ $$0PERI:(DE-600)2644375-2$$a10.1021/acsmacrolett.8b00406$$gVol. 7, no. 7, p. 881 - 885$$n7$$p881 - 885$$tACS Macro Letters$$v7$$x2161-1653$$y2018
000851198 8564_ $$uhttps://juser.fz-juelich.de/record/851198/files/acsmacrolett.8b00406.pdf$$yRestricted
000851198 8564_ $$uhttps://juser.fz-juelich.de/record/851198/files/acsmacrolett.8b00406.gif?subformat=icon$$xicon$$yRestricted
000851198 8564_ $$uhttps://juser.fz-juelich.de/record/851198/files/acsmacrolett.8b00406.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000851198 8564_ $$uhttps://juser.fz-juelich.de/record/851198/files/acsmacrolett.8b00406.jpg?subformat=icon-180$$xicon-180$$yRestricted
000851198 8564_ $$uhttps://juser.fz-juelich.de/record/851198/files/acsmacrolett.8b00406.jpg?subformat=icon-640$$xicon-640$$yRestricted
000851198 8564_ $$uhttps://juser.fz-juelich.de/record/851198/files/acsmacrolett.8b00406.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851198 909CO $$ooai:juser.fz-juelich.de:851198$$pVDB
000851198 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168275$$aForschungszentrum Jülich$$b0$$kFZJ
000851198 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b3$$kFZJ
000851198 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
000851198 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b5$$kFZJ
000851198 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000851198 9141_ $$y2018
000851198 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS MACRO LETT : 2015
000851198 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851198 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851198 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851198 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851198 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851198 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851198 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851198 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS MACRO LETT : 2015
000851198 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000851198 980__ $$ajournal
000851198 980__ $$aVDB
000851198 980__ $$aI:(DE-Juel1)IEK-12-20141217
000851198 980__ $$aUNRESTRICTED
000851198 981__ $$aI:(DE-Juel1)IMD-4-20141217