000851208 001__ 851208
000851208 005__ 20240711085650.0
000851208 0247_ $$2doi$$a10.1016/j.surfcoat.2018.02.035
000851208 0247_ $$2ISSN$$a0257-8972
000851208 0247_ $$2ISSN$$a1879-3347
000851208 0247_ $$2WOS$$aWOS:000430776100003
000851208 037__ $$aFZJ-2018-04908
000851208 082__ $$a620
000851208 1001_ $$0P:(DE-Juel1)162271$$aGonzalez-Julian, J.$$b0$$eCorresponding author
000851208 245__ $$aThermal cycling testing of TBCs on Cr 2 AlC MAX phase substrates
000851208 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000851208 3367_ $$2DRIVER$$aarticle
000851208 3367_ $$2DataCite$$aOutput Types/Journal article
000851208 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534398019_18911
000851208 3367_ $$2BibTeX$$aARTICLE
000851208 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851208 3367_ $$00$$2EndNote$$aJournal Article
000851208 520__ $$aThermal barrier coatings (TBCs) based on yttria-stabilized zirconia (YSZ) were deposited by Atmospheric Plasma Spray (APS) on highly dense and pure Cr2AlC substrates. The Cr2AlC/YSZ systems were tested under thermal cycling conditions at temperatures between 1100 and 1300 °C testing up to 500 h. The response of the system was excellent due to the strong adhesion between the substrate and the coating, and the formation of an outer and protective layer based on α-Al2O3. The oxide scale is formed due to the diffusion of Al atoms from the crystal structure of the Cr2AlC, followed by the reaction with oxygen in the air. The thickness of the oxide scale was 8.9, 17.6 and 39.7 μm at 1100, 1200 and 1300 °C, respectively, which is rather thick in comparison with the classical superalloy/TBC systems. Cr2AlC/YSZ systems survived without any damage under the severe cycling conditions at 1100 and 1200 °C due to the protective oxide scale layer and the sufficient thermal expansion match between the Cr2AlC, YSZ and α-Al2O3. At 1300 °C and after 268 h of cycling conditions, the system failed due to the formation of a porous carbide layer underneath of the oxide scale. The results are rather promising and confirm the potential of the MAX phases to operate under long term applications of high temperature and oxidizing environments.
000851208 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000851208 588__ $$aDataset connected to CrossRef
000851208 7001_ $$0P:(DE-Juel1)171463$$aGo, T.$$b1$$ufzj
000851208 7001_ $$0P:(DE-Juel1)129630$$aMack, D. E.$$b2$$ufzj
000851208 7001_ $$0P:(DE-Juel1)129670$$aVaßen, R.$$b3$$ufzj
000851208 773__ $$0PERI:(DE-600)1502240-7$$a10.1016/j.surfcoat.2018.02.035$$gVol. 340, p. 17 - 24$$p17 - 24$$tSurface and coatings technology$$v340$$x0257-8972$$y2018
000851208 8564_ $$uhttps://juser.fz-juelich.de/record/851208/files/1-s2.0-S0257897218301531-main.pdf$$yRestricted
000851208 8564_ $$uhttps://juser.fz-juelich.de/record/851208/files/1-s2.0-S0257897218301531-main.gif?subformat=icon$$xicon$$yRestricted
000851208 8564_ $$uhttps://juser.fz-juelich.de/record/851208/files/1-s2.0-S0257897218301531-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000851208 8564_ $$uhttps://juser.fz-juelich.de/record/851208/files/1-s2.0-S0257897218301531-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000851208 8564_ $$uhttps://juser.fz-juelich.de/record/851208/files/1-s2.0-S0257897218301531-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000851208 8564_ $$uhttps://juser.fz-juelich.de/record/851208/files/1-s2.0-S0257897218301531-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851208 909CO $$ooai:juser.fz-juelich.de:851208$$pVDB
000851208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b0$$kFZJ
000851208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171463$$aForschungszentrum Jülich$$b1$$kFZJ
000851208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129630$$aForschungszentrum Jülich$$b2$$kFZJ
000851208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b3$$kFZJ
000851208 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000851208 9141_ $$y2018
000851208 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000851208 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851208 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSURF COAT TECH : 2015
000851208 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851208 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851208 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851208 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851208 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851208 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851208 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851208 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000851208 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851208 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000851208 980__ $$ajournal
000851208 980__ $$aVDB
000851208 980__ $$aI:(DE-Juel1)IEK-1-20101013
000851208 980__ $$aUNRESTRICTED
000851208 981__ $$aI:(DE-Juel1)IMD-2-20101013