001     851208
005     20240711085650.0
024 7 _ |a 10.1016/j.surfcoat.2018.02.035
|2 doi
024 7 _ |a 0257-8972
|2 ISSN
024 7 _ |a 1879-3347
|2 ISSN
024 7 _ |a WOS:000430776100003
|2 WOS
037 _ _ |a FZJ-2018-04908
082 _ _ |a 620
100 1 _ |a Gonzalez-Julian, J.
|0 P:(DE-Juel1)162271
|b 0
|e Corresponding author
245 _ _ |a Thermal cycling testing of TBCs on Cr 2 AlC MAX phase substrates
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1534398019_18911
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Thermal barrier coatings (TBCs) based on yttria-stabilized zirconia (YSZ) were deposited by Atmospheric Plasma Spray (APS) on highly dense and pure Cr2AlC substrates. The Cr2AlC/YSZ systems were tested under thermal cycling conditions at temperatures between 1100 and 1300 °C testing up to 500 h. The response of the system was excellent due to the strong adhesion between the substrate and the coating, and the formation of an outer and protective layer based on α-Al2O3. The oxide scale is formed due to the diffusion of Al atoms from the crystal structure of the Cr2AlC, followed by the reaction with oxygen in the air. The thickness of the oxide scale was 8.9, 17.6 and 39.7 μm at 1100, 1200 and 1300 °C, respectively, which is rather thick in comparison with the classical superalloy/TBC systems. Cr2AlC/YSZ systems survived without any damage under the severe cycling conditions at 1100 and 1200 °C due to the protective oxide scale layer and the sufficient thermal expansion match between the Cr2AlC, YSZ and α-Al2O3. At 1300 °C and after 268 h of cycling conditions, the system failed due to the formation of a porous carbide layer underneath of the oxide scale. The results are rather promising and confirm the potential of the MAX phases to operate under long term applications of high temperature and oxidizing environments.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Go, T.
|0 P:(DE-Juel1)171463
|b 1
|u fzj
700 1 _ |a Mack, D. E.
|0 P:(DE-Juel1)129630
|b 2
|u fzj
700 1 _ |a Vaßen, R.
|0 P:(DE-Juel1)129670
|b 3
|u fzj
773 _ _ |a 10.1016/j.surfcoat.2018.02.035
|g Vol. 340, p. 17 - 24
|0 PERI:(DE-600)1502240-7
|p 17 - 24
|t Surface and coatings technology
|v 340
|y 2018
|x 0257-8972
856 4 _ |u https://juser.fz-juelich.de/record/851208/files/1-s2.0-S0257897218301531-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851208/files/1-s2.0-S0257897218301531-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851208/files/1-s2.0-S0257897218301531-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851208/files/1-s2.0-S0257897218301531-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851208/files/1-s2.0-S0257897218301531-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851208/files/1-s2.0-S0257897218301531-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:851208
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162271
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171463
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129630
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129670
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SURF COAT TECH : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21