000851211 001__ 851211
000851211 005__ 20240712113113.0
000851211 0247_ $$2doi$$a10.1016/j.jpowsour.2018.05.026
000851211 0247_ $$2ISSN$$a0378-7753
000851211 0247_ $$2ISSN$$a1873-2755
000851211 0247_ $$2WOS$$aWOS:000438001800003
000851211 037__ $$aFZJ-2018-04911
000851211 082__ $$a620
000851211 1001_ $$0P:(DE-HGF)0$$aRisthaus, Tim$$b0
000851211 245__ $$aA high-capacity P2 Na 2/3 Ni 1/3 Mn 2/3 O 2 cathode material for sodium ion batteries with oxygen activity
000851211 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000851211 3367_ $$2DRIVER$$aarticle
000851211 3367_ $$2DataCite$$aOutput Types/Journal article
000851211 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534398398_23844
000851211 3367_ $$2BibTeX$$aARTICLE
000851211 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851211 3367_ $$00$$2EndNote$$aJournal Article
000851211 520__ $$aNa2/3Ni1/3Mn2/3O2 with a P2 phase is investigated as a cathod material for sodium ion batteries. It delivers a high discharge capacity of 228 mAh g−1 within 1.5–4.5 V in half cells, which is much higher than the theoretical value of 172 mAh g−1. Metal K-edge X-ray absorption near edge spectroscopy results show that the Mn ions remain in 4 + oxidation state during sodiation/desodiation and the charge compensation is due to the Ni2+/Ni4+ redox. Soft X-ray absorption spectroscopy results reveals a gradient in the valence state of Ni ions from bulk to surface for the charged electrode, and a change in the integrated intensity of O K-edge peak after charging, strongly suggesting that part of the charge compensation takes place at the oxygen sites. In addition, the reduction of Mn ions on the surface is observed on the discharged electrode, which indicates that the carbonate-based electrolyte reacts with the cathode material, resulting in a fast capacity drop. By utilizing an ionic liquid (IL) electrolyte (1 M NaTFSI in Pyr14TFSI) to reduce the interfacial reactions, the discharge capacity of ∼200 mAh g−1 is retained.
000851211 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000851211 588__ $$aDataset connected to CrossRef
000851211 7001_ $$0P:(DE-HGF)0$$aZhou, Dong$$b1
000851211 7001_ $$0P:(DE-HGF)0$$aCao, Xia$$b2
000851211 7001_ $$0P:(DE-Juel1)169319$$aHe, Xin$$b3$$ufzj
000851211 7001_ $$0P:(DE-HGF)0$$aQiu, Bao$$b4
000851211 7001_ $$0P:(DE-HGF)0$$aWang, Jun$$b5
000851211 7001_ $$0P:(DE-HGF)0$$aZhang, Li$$b6
000851211 7001_ $$0P:(DE-HGF)0$$aLiu, Zhaoping$$b7
000851211 7001_ $$0P:(DE-Juel1)166311$$aPaillard, Elie$$b8
000851211 7001_ $$0P:(DE-HGF)0$$aSchumacher, Gerhard$$b9
000851211 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b10$$ufzj
000851211 7001_ $$0P:(DE-Juel1)174577$$aLi, Jie$$b11$$eCorresponding author$$ufzj
000851211 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2018.05.026$$gVol. 395, p. 16 - 24$$p16 - 24$$tJournal of power sources$$v395$$x0378-7753$$y2018
000851211 8564_ $$uhttps://juser.fz-juelich.de/record/851211/files/1-s2.0-S0378775318304889-main.pdf$$yRestricted
000851211 8564_ $$uhttps://juser.fz-juelich.de/record/851211/files/1-s2.0-S0378775318304889-main.gif?subformat=icon$$xicon$$yRestricted
000851211 8564_ $$uhttps://juser.fz-juelich.de/record/851211/files/1-s2.0-S0378775318304889-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000851211 8564_ $$uhttps://juser.fz-juelich.de/record/851211/files/1-s2.0-S0378775318304889-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000851211 8564_ $$uhttps://juser.fz-juelich.de/record/851211/files/1-s2.0-S0378775318304889-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000851211 8564_ $$uhttps://juser.fz-juelich.de/record/851211/files/1-s2.0-S0378775318304889-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851211 909CO $$ooai:juser.fz-juelich.de:851211$$pVDB
000851211 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169319$$aForschungszentrum Jülich$$b3$$kFZJ
000851211 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166311$$aForschungszentrum Jülich$$b8$$kFZJ
000851211 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b10$$kFZJ
000851211 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174577$$aForschungszentrum Jülich$$b11$$kFZJ
000851211 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000851211 9141_ $$y2018
000851211 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2015
000851211 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851211 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851211 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000851211 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851211 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851211 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851211 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851211 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851211 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851211 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851211 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000851211 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2015
000851211 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000851211 980__ $$ajournal
000851211 980__ $$aVDB
000851211 980__ $$aI:(DE-Juel1)IEK-12-20141217
000851211 980__ $$aUNRESTRICTED
000851211 981__ $$aI:(DE-Juel1)IMD-4-20141217