001     851211
005     20240712113113.0
024 7 _ |a 10.1016/j.jpowsour.2018.05.026
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a WOS:000438001800003
|2 WOS
037 _ _ |a FZJ-2018-04911
082 _ _ |a 620
100 1 _ |a Risthaus, Tim
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A high-capacity P2 Na 2/3 Ni 1/3 Mn 2/3 O 2 cathode material for sodium ion batteries with oxygen activity
260 _ _ |a New York, NY [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1534398398_23844
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Na2/3Ni1/3Mn2/3O2 with a P2 phase is investigated as a cathod material for sodium ion batteries. It delivers a high discharge capacity of 228 mAh g−1 within 1.5–4.5 V in half cells, which is much higher than the theoretical value of 172 mAh g−1. Metal K-edge X-ray absorption near edge spectroscopy results show that the Mn ions remain in 4 + oxidation state during sodiation/desodiation and the charge compensation is due to the Ni2+/Ni4+ redox. Soft X-ray absorption spectroscopy results reveals a gradient in the valence state of Ni ions from bulk to surface for the charged electrode, and a change in the integrated intensity of O K-edge peak after charging, strongly suggesting that part of the charge compensation takes place at the oxygen sites. In addition, the reduction of Mn ions on the surface is observed on the discharged electrode, which indicates that the carbonate-based electrolyte reacts with the cathode material, resulting in a fast capacity drop. By utilizing an ionic liquid (IL) electrolyte (1 M NaTFSI in Pyr14TFSI) to reduce the interfacial reactions, the discharge capacity of ∼200 mAh g−1 is retained.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zhou, Dong
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Cao, Xia
|0 P:(DE-HGF)0
|b 2
700 1 _ |a He, Xin
|0 P:(DE-Juel1)169319
|b 3
|u fzj
700 1 _ |a Qiu, Bao
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wang, Jun
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Zhang, Li
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Liu, Zhaoping
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Paillard, Elie
|0 P:(DE-Juel1)166311
|b 8
700 1 _ |a Schumacher, Gerhard
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 10
|u fzj
700 1 _ |a Li, Jie
|0 P:(DE-Juel1)174577
|b 11
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.jpowsour.2018.05.026
|g Vol. 395, p. 16 - 24
|0 PERI:(DE-600)1491915-1
|p 16 - 24
|t Journal of power sources
|v 395
|y 2018
|x 0378-7753
856 4 _ |u https://juser.fz-juelich.de/record/851211/files/1-s2.0-S0378775318304889-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851211/files/1-s2.0-S0378775318304889-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851211/files/1-s2.0-S0378775318304889-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851211/files/1-s2.0-S0378775318304889-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851211/files/1-s2.0-S0378775318304889-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851211/files/1-s2.0-S0378775318304889-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:851211
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)169319
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)166311
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)174577
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2015
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21