000851229 001__ 851229
000851229 005__ 20240610121336.0
000851229 0247_ $$2doi$$a10.1016/j.jallcom.2018.06.116
000851229 0247_ $$2ISSN$$a0925-8388
000851229 0247_ $$2ISSN$$a1873-4669
000851229 0247_ $$2WOS$$aWOS:000444058300089
000851229 037__ $$aFZJ-2018-04929
000851229 041__ $$aEnglish
000851229 082__ $$a670
000851229 1001_ $$0P:(DE-HGF)0$$aZhang, Yi-Xin$$b0
000851229 245__ $$aHighly enhanced thermoelectric properties of Cu 1.8 S by introducing PbS
000851229 260__ $$aLausanne$$bElsevier$$c2018
000851229 3367_ $$2DRIVER$$aarticle
000851229 3367_ $$2DataCite$$aOutput Types/Journal article
000851229 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534398716_24268
000851229 3367_ $$2BibTeX$$aARTICLE
000851229 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851229 3367_ $$00$$2EndNote$$aJournal Article
000851229 520__ $$aDigenite (Cu1.8S) has attracted extensive attention as candidate for use in thermoelectric applications due to its low-cost, low-toxicity characteristics, but the thermoelectric (TE) property is still not good. In this work, PbS was used for improving TE properties of polycrystalline Cu1.8S bulk. Cu1.8S+ x wt% PbS (x = 0, 0.5, 1, 2, 3) bulk samples were fabricated via mechanical alloying (MA) and spark plasma sintering (SPS) techniques. The effects of adding PbS on the TE performance of Cu1.8S were investigated in detail at the temperature between 323 K and 773 K. According to the results, introducing PbS is an efficient approach for optimizing the TE properties of Cu1.8S, which is mainly due to the maintained electrical transport properties by the regulated hole carrier concentration and the modified band structure, as well as the reduced the thermal conductivity by the generated point defect and additional interfaces. An optimum thermoelectric figure of merit (ZT) value of 1.1 was obtained at 773 K for the Cu1.8S sample with 2 wt% PbS, which is 2.2 times higher than that of the pristine Cu1.8S (0.49 at 773 K).
000851229 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000851229 588__ $$aDataset connected to CrossRef
000851229 7001_ $$0P:(DE-Juel1)171624$$aMa, Zheng$$b1
000851229 7001_ $$00000-0001-8810-5103$$aGe, Zhen-Hua$$b2$$eCorresponding author
000851229 7001_ $$0P:(DE-HGF)0$$aQin, Peng$$b3
000851229 7001_ $$0P:(DE-Juel1)165965$$aZheng, Fengshan$$b4
000851229 7001_ $$00000-0001-6594-3913$$aFeng, Jing$$b5
000851229 773__ $$0PERI:(DE-600)2012675-X$$a10.1016/j.jallcom.2018.06.116$$gVol. 764, p. 738 - 744$$p738 - 744$$tJournal of alloys and compounds$$v764$$x0925-8388$$y2018
000851229 8564_ $$uhttps://juser.fz-juelich.de/record/851229/files/1-s2.0-S0925838818322370-main.pdf$$yRestricted
000851229 8564_ $$uhttps://juser.fz-juelich.de/record/851229/files/1-s2.0-S0925838818322370-main.gif?subformat=icon$$xicon$$yRestricted
000851229 8564_ $$uhttps://juser.fz-juelich.de/record/851229/files/1-s2.0-S0925838818322370-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000851229 8564_ $$uhttps://juser.fz-juelich.de/record/851229/files/1-s2.0-S0925838818322370-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000851229 8564_ $$uhttps://juser.fz-juelich.de/record/851229/files/1-s2.0-S0925838818322370-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000851229 8564_ $$uhttps://juser.fz-juelich.de/record/851229/files/1-s2.0-S0925838818322370-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851229 909CO $$ooai:juser.fz-juelich.de:851229$$pVDB
000851229 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171624$$aForschungszentrum Jülich$$b1$$kFZJ
000851229 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165965$$aForschungszentrum Jülich$$b4$$kFZJ
000851229 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000851229 9141_ $$y2018
000851229 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ALLOY COMPD : 2015
000851229 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851229 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851229 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851229 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851229 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851229 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851229 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851229 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851229 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851229 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851229 920__ $$lyes
000851229 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000851229 980__ $$ajournal
000851229 980__ $$aVDB
000851229 980__ $$aI:(DE-Juel1)PGI-5-20110106
000851229 980__ $$aUNRESTRICTED
000851229 981__ $$aI:(DE-Juel1)ER-C-1-20170209