000851242 001__ 851242
000851242 005__ 20240712113114.0
000851242 0247_ $$2doi$$a10.1038/s41560-018-0107-2
000851242 0247_ $$2WOS$$aWOS:000430252700012
000851242 0247_ $$2altmetric$$aaltmetric:36880701
000851242 037__ $$aFZJ-2018-04937
000851242 082__ $$a333.7
000851242 1001_ $$0P:(DE-HGF)0$$aSchmuch, Richard$$b0
000851242 245__ $$aPerformance and cost of materials for lithium-based rechargeable automotive batteries
000851242 260__ $$aLondon$$bNature Publishing Group$$c2018
000851242 3367_ $$2DRIVER$$aarticle
000851242 3367_ $$2DataCite$$aOutput Types/Journal article
000851242 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534402015_18911
000851242 3367_ $$2BibTeX$$aARTICLE
000851242 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851242 3367_ $$00$$2EndNote$$aJournal Article
000851242 520__ $$aIt is widely accepted that for electric vehicles to be accepted by consumers and to achieve wide market penetration, ranges of at least 500 km at an affordable cost are required. Therefore, significant improvements to lithium-ion batteries (LIBs) in terms of energy density and cost along the battery value chain are required, while other key performance indicators, such as lifetime, safety, fast-charging ability and low-temperature performance, need to be enhanced or at least sustained. Here, we review advances and challenges in LIB materials for automotive applications, in particular with respect to cost and performance parameters. The production processes of anode and cathode materials are discussed, focusing on material abundance and cost. Advantages and challenges of different types of electrolyte for automotive batteries are examined. Finally, energy densities and costs of promising battery chemistries are critically evaluated along with an assessment of the potential to fulfil the ambitious targets of electric vehicle propulsion.
000851242 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000851242 7001_ $$0P:(DE-HGF)0$$aWagner, Ralf$$b1
000851242 7001_ $$0P:(DE-HGF)0$$aHörpel, Gerhard$$b2
000851242 7001_ $$0P:(DE-HGF)0$$aPlacke, Tobias$$b3$$eCorresponding author
000851242 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4$$eCorresponding author$$ufzj
000851242 773__ $$0PERI:(DE-600)2847369-3$$a10.1038/s41560-018-0107-2$$p267-278$$tNature energy$$v3$$x2058-7546$$y2018
000851242 8564_ $$uhttps://juser.fz-juelich.de/record/851242/files/s41560-018-0107-2.pdf$$yRestricted
000851242 8564_ $$uhttps://juser.fz-juelich.de/record/851242/files/s41560-018-0107-2.gif?subformat=icon$$xicon$$yRestricted
000851242 8564_ $$uhttps://juser.fz-juelich.de/record/851242/files/s41560-018-0107-2.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000851242 8564_ $$uhttps://juser.fz-juelich.de/record/851242/files/s41560-018-0107-2.jpg?subformat=icon-180$$xicon-180$$yRestricted
000851242 8564_ $$uhttps://juser.fz-juelich.de/record/851242/files/s41560-018-0107-2.jpg?subformat=icon-640$$xicon-640$$yRestricted
000851242 8564_ $$uhttps://juser.fz-juelich.de/record/851242/files/s41560-018-0107-2.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851242 909CO $$ooai:juser.fz-juelich.de:851242$$pVDB
000851242 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
000851242 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000851242 9141_ $$y2018
000851242 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000851242 980__ $$ajournal
000851242 980__ $$aVDB
000851242 980__ $$aI:(DE-Juel1)IEK-12-20141217
000851242 980__ $$aUNRESTRICTED
000851242 981__ $$aI:(DE-Juel1)IMD-4-20141217