001     851242
005     20240712113114.0
024 7 _ |a 10.1038/s41560-018-0107-2
|2 doi
024 7 _ |a WOS:000430252700012
|2 WOS
024 7 _ |a altmetric:36880701
|2 altmetric
037 _ _ |a FZJ-2018-04937
082 _ _ |a 333.7
100 1 _ |a Schmuch, Richard
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Performance and cost of materials for lithium-based rechargeable automotive batteries
260 _ _ |a London
|c 2018
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1534402015_18911
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a It is widely accepted that for electric vehicles to be accepted by consumers and to achieve wide market penetration, ranges of at least 500 km at an affordable cost are required. Therefore, significant improvements to lithium-ion batteries (LIBs) in terms of energy density and cost along the battery value chain are required, while other key performance indicators, such as lifetime, safety, fast-charging ability and low-temperature performance, need to be enhanced or at least sustained. Here, we review advances and challenges in LIB materials for automotive applications, in particular with respect to cost and performance parameters. The production processes of anode and cathode materials are discussed, focusing on material abundance and cost. Advantages and challenges of different types of electrolyte for automotive batteries are examined. Finally, energy densities and costs of promising battery chemistries are critically evaluated along with an assessment of the potential to fulfil the ambitious targets of electric vehicle propulsion.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
700 1 _ |a Wagner, Ralf
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hörpel, Gerhard
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Placke, Tobias
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.1038/s41560-018-0107-2
|0 PERI:(DE-600)2847369-3
|p 267-278
|t Nature energy
|v 3
|y 2018
|x 2058-7546
856 4 _ |u https://juser.fz-juelich.de/record/851242/files/s41560-018-0107-2.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851242/files/s41560-018-0107-2.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851242/files/s41560-018-0107-2.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851242/files/s41560-018-0107-2.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851242/files/s41560-018-0107-2.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851242/files/s41560-018-0107-2.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:851242
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21