001     851243
005     20240712113114.0
024 7 _ |a 10.1021/acs.chemmater.8b00413
|2 doi
024 7 _ |a 0897-4756
|2 ISSN
024 7 _ |a 1520-5002
|2 ISSN
024 7 _ |a WOS:000431088400029
|2 WOS
037 _ _ |a FZJ-2018-04938
082 _ _ |a 540
100 1 _ |a Beltrop, Kolja
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Triphenylphosphine Oxide as Highly Effective Electrolyte Additive for Graphite/NMC811 Lithium Ion Cells
260 _ _ |a Washington, DC
|c 2018
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1534402972_23191
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Nickel-rich layered oxide materials (LiNixMnyCo1–x–yO2, x ≥ 0.8, LiNMC) attract great interest for application as positive electrode in lithium ion batteries (LIBs) due to high specific discharge capacities at moderate upper cutoff voltages below 4.4 V vs Li/Li+. However, the comparatively poor cycling stability as well as inferior safety characteristics prevent this material class from commercial application so far. Against this background, new electrolyte formulations including additives are a major prerequisite for a sufficient electrochemical performance of Ni-rich NMC materials. In this work, we introduce triphenylphosphine oxide (TPPO) as electrolyte additive for the application in graphite/LiNi0.8Mn0.1Co0.1O2 (NMC811) cells. The addition of only 0.5 wt % TPPO into a carbonate-based electrolyte (LiPF6 in EC:EMC) significantly increases the first cycle Coulombic efficiency as well as the reversible specific capacity and improves the capacity retention of the LIB full cell cycled between 2.8 and 4.3 V. Electrochemical results indicate that the full cell capacity fade is predominantly caused by active lithium loss at the negative electrode. In this contribution, X-ray photoelectron spectroscopy and inductively coupled plasma-mass spectrometry analysis confirm the participation of the electrolyte additive in the solid electrolyte interphase formation on the negative electrode as well as in the cathode electrolyte interphase formation on the positive electrode, thus, effectively reducing the active lithium loss during cycling. Furthermore, the performance of the TPPO additive is compared to literature known electrolyte additives including triphenylphosphine, vinylene carbonate, and diphenyl carbonate demonstrating the outstanding working ability of TPPO in graphite/NMC811 cells.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Klein, Sven
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Nölle, Roman
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wilken, Andrea
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lee, Juhyon J.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Köster, Thomas K.-J.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Reiter, Jakub
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Tao, Liang
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Liang, Chengdu
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 9
|u fzj
700 1 _ |a Qi, Xin
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
700 1 _ |a Placke, Tobias
|0 0000-0002-2097-5193
|b 11
|e Corresponding author
773 _ _ |a 10.1021/acs.chemmater.8b00413
|g Vol. 30, no. 8, p. 2726 - 2741
|0 PERI:(DE-600)1500399-1
|n 8
|p 2726 - 2741
|t Chemistry of materials
|v 30
|y 2018
|x 1520-5002
856 4 _ |u https://juser.fz-juelich.de/record/851243/files/acs.chemmater.8b00413.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851243/files/acs.chemmater.8b00413.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851243/files/acs.chemmater.8b00413.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851243/files/acs.chemmater.8b00413.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851243/files/acs.chemmater.8b00413.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851243/files/acs.chemmater.8b00413.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:851243
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM MATER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEM MATER : 2015
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21