000851247 001__ 851247
000851247 005__ 20210129234821.0
000851247 0247_ $$2doi$$a10.1190/geo2017-0297.1
000851247 0247_ $$2ISSN$$a0016-8033
000851247 0247_ $$2ISSN$$a1942-2156
000851247 0247_ $$2Handle$$a2128/19632
000851247 0247_ $$2WOS$$aWOS:000429311000050
000851247 037__ $$aFZJ-2018-04942
000851247 082__ $$a550
000851247 1001_ $$0P:(DE-HGF)0$$aLooms, Majken Caroline$$b0
000851247 245__ $$aMapping sand layers in clayey till using crosshole ground-penetrating radar
000851247 260__ $$aTulsa, Okla.$$bSEG$$c2018
000851247 3367_ $$2DRIVER$$aarticle
000851247 3367_ $$2DataCite$$aOutput Types/Journal article
000851247 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1536155271_466
000851247 3367_ $$2BibTeX$$aARTICLE
000851247 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851247 3367_ $$00$$2EndNote$$aJournal Article
000851247 520__ $$aFluid transport through clayey tills governs the quantity and quality of groundwater resources in the Northern Hemisphere. This transport is often controlled by a 3D network of macropores (biopores, fractures, and sand lenses) within the clayey till. At present, a nondestructive technique that can map and characterize the sand-lens network does not exist, and full excavation or extensive drilling is therefore the only solution. Acquisition and modeling of crosshole ground-penetrating radar (GPR) may provide the answer to this problem. We collected 1D and 2D crosshole GPR data at a field site in Denmark from four 8 m deep boreholes with horizontal distances varying between 2.64 and 5.05 m. We find that the depth, thickness, and tilt of a coherent sand layer within the clayey till (approximately 0.4–0.6 m thick), as well as the underlying sand formation, can be mapped accurately using GPR data. We efficiently identify the sand as a highly resistive section with high electromagnetic (EM) wave velocities, whereas the clayey till is conductive with lower EM wave velocities. We find that the exact location of the sand occurrences is better delineated by the increase in amplitude than the increase in EM wave velocity. We believe that crosshole GPR may contribute significantly to groundwater protection and contaminant remediation initiatives.
000851247 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000851247 588__ $$aDataset connected to CrossRef
000851247 7001_ $$0P:(DE-Juel1)129483$$aKlotzsche, Anja$$b1$$ufzj
000851247 7001_ $$0P:(DE-Juel1)129561$$avan der Kruk, Jan$$b2$$ufzj
000851247 7001_ $$0P:(DE-HGF)0$$aLarsen, Thomas Hauerberg$$b3
000851247 7001_ $$0P:(DE-HGF)0$$aEdsen, Anders$$b4
000851247 7001_ $$0P:(DE-HGF)0$$aTuxen, Nina$$b5
000851247 7001_ $$0P:(DE-HGF)0$$aHamburger, Nancy$$b6
000851247 7001_ $$0P:(DE-HGF)0$$aKeskinen, Johanna$$b7
000851247 7001_ $$0P:(DE-HGF)0$$aNielsen, Lars$$b8
000851247 773__ $$0PERI:(DE-600)2033021-2$$a10.1190/geo2017-0297.1$$gVol. 83, no. 1, p. A21 - A26$$n1$$pA21 - A26$$tGeophysics$$v83$$x1942-2156$$y2018
000851247 8564_ $$uhttps://juser.fz-juelich.de/record/851247/files/Looms%20et%20al.%202018.pdf$$yOpenAccess
000851247 8564_ $$uhttps://juser.fz-juelich.de/record/851247/files/Looms%20et%20al.%202018.gif?subformat=icon$$xicon$$yOpenAccess
000851247 8564_ $$uhttps://juser.fz-juelich.de/record/851247/files/Looms%20et%20al.%202018.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000851247 8564_ $$uhttps://juser.fz-juelich.de/record/851247/files/Looms%20et%20al.%202018.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000851247 8564_ $$uhttps://juser.fz-juelich.de/record/851247/files/Looms%20et%20al.%202018.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000851247 8564_ $$uhttps://juser.fz-juelich.de/record/851247/files/Looms%20et%20al.%202018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000851247 909CO $$ooai:juser.fz-juelich.de:851247$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000851247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129483$$aForschungszentrum Jülich$$b1$$kFZJ
000851247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129561$$aForschungszentrum Jülich$$b2$$kFZJ
000851247 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000851247 9141_ $$y2018
000851247 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851247 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOPHYSICS : 2015
000851247 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851247 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851247 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851247 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851247 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000851247 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851247 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851247 920__ $$lyes
000851247 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000851247 980__ $$ajournal
000851247 980__ $$aVDB
000851247 980__ $$aUNRESTRICTED
000851247 980__ $$aI:(DE-Juel1)IBG-3-20101118
000851247 9801_ $$aFullTexts