001     851247
005     20210129234821.0
024 7 _ |a 10.1190/geo2017-0297.1
|2 doi
024 7 _ |a 0016-8033
|2 ISSN
024 7 _ |a 1942-2156
|2 ISSN
024 7 _ |a 2128/19632
|2 Handle
024 7 _ |a WOS:000429311000050
|2 WOS
037 _ _ |a FZJ-2018-04942
082 _ _ |a 550
100 1 _ |a Looms, Majken Caroline
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Mapping sand layers in clayey till using crosshole ground-penetrating radar
260 _ _ |a Tulsa, Okla.
|c 2018
|b SEG
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1536155271_466
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Fluid transport through clayey tills governs the quantity and quality of groundwater resources in the Northern Hemisphere. This transport is often controlled by a 3D network of macropores (biopores, fractures, and sand lenses) within the clayey till. At present, a nondestructive technique that can map and characterize the sand-lens network does not exist, and full excavation or extensive drilling is therefore the only solution. Acquisition and modeling of crosshole ground-penetrating radar (GPR) may provide the answer to this problem. We collected 1D and 2D crosshole GPR data at a field site in Denmark from four 8 m deep boreholes with horizontal distances varying between 2.64 and 5.05 m. We find that the depth, thickness, and tilt of a coherent sand layer within the clayey till (approximately 0.4–0.6 m thick), as well as the underlying sand formation, can be mapped accurately using GPR data. We efficiently identify the sand as a highly resistive section with high electromagnetic (EM) wave velocities, whereas the clayey till is conductive with lower EM wave velocities. We find that the exact location of the sand occurrences is better delineated by the increase in amplitude than the increase in EM wave velocity. We believe that crosshole GPR may contribute significantly to groundwater protection and contaminant remediation initiatives.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Klotzsche, Anja
|0 P:(DE-Juel1)129483
|b 1
|u fzj
700 1 _ |a van der Kruk, Jan
|0 P:(DE-Juel1)129561
|b 2
|u fzj
700 1 _ |a Larsen, Thomas Hauerberg
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Edsen, Anders
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Tuxen, Nina
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hamburger, Nancy
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Keskinen, Johanna
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Nielsen, Lars
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1190/geo2017-0297.1
|g Vol. 83, no. 1, p. A21 - A26
|0 PERI:(DE-600)2033021-2
|n 1
|p A21 - A26
|t Geophysics
|v 83
|y 2018
|x 1942-2156
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/851247/files/Looms%20et%20al.%202018.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/851247/files/Looms%20et%20al.%202018.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/851247/files/Looms%20et%20al.%202018.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/851247/files/Looms%20et%20al.%202018.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/851247/files/Looms%20et%20al.%202018.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/851247/files/Looms%20et%20al.%202018.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:851247
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129483
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129561
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOPHYSICS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21