000851248 001__ 851248
000851248 005__ 20210129234821.0
000851248 0247_ $$2doi$$a10.1190/geo2017-0617.1
000851248 0247_ $$2ISSN$$a0016-8033
000851248 0247_ $$2ISSN$$a1942-2156
000851248 0247_ $$2Handle$$a2128/19633
000851248 0247_ $$2WOS$$aWOS:000443597500048
000851248 0247_ $$2altmetric$$aaltmetric:47992019
000851248 037__ $$aFZJ-2018-04943
000851248 082__ $$a550
000851248 1001_ $$0P:(DE-HGF)0$$aJazayeri, Sajad$$b0
000851248 245__ $$aImproving estimates of buried pipe diameter and infilling material from ground-penetrating radar profiles with full-waveform inversion
000851248 260__ $$aTulsa, Okla.$$bSEG$$c2018
000851248 3367_ $$2DRIVER$$aarticle
000851248 3367_ $$2DataCite$$aOutput Types/Journal article
000851248 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1536156402_460
000851248 3367_ $$2BibTeX$$aARTICLE
000851248 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851248 3367_ $$00$$2EndNote$$aJournal Article
000851248 520__ $$aGround-penetrating radar (GPR) is a widely used tool for the detection and location of buried utilities. Buried pipes generate characteristic diffraction hyperbolas in raw GPR data. Current methods for analyzing the shapes and timing of the diffraction hyperbolas are very effective for locating pipes, but they are less effective for determining the diameter of the pipes, particularly when the pipes are smaller than the radar wavelengths, typically a few tens of centimeters. A full-waveform inversion (FWI) method is described for improving estimates of the diameter of a pipe and confirming the infilling material (air/water/etc.) for the simple case of an isolated diffraction hyperbola on a profile run perpendicular to a pipe with antennas in broadside mode (parallel to the pipe). The technique described here can improve a good initial guess of the pipe diameter (within 30%–50% of the true value) to a better estimate (less than approximately 8% misfit). This method is developed by combining two freely available software packages with a deconvolution method for GPR effective source wavelet estimation. The FWI process is run with the PEST algorithm (model-independent parameter estimation and uncertainty analysis). PEST iteratively calls the gprMax software package for forward modeling of the GPR signal as the model for the pipe and surrounding soil is refined
000851248 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000851248 588__ $$aDataset connected to CrossRef
000851248 7001_ $$0P:(DE-Juel1)129483$$aKlotzsche, Anja$$b1$$ufzj
000851248 7001_ $$0P:(DE-HGF)0$$aKruse, Sarah$$b2
000851248 773__ $$0PERI:(DE-600)2033021-2$$a10.1190/geo2017-0617.1$$gVol. 83, no. 4, p. H27 - H41$$n4$$pH27 - H41$$tGeophysics$$v83$$x1942-2156$$y2018
000851248 8564_ $$uhttps://juser.fz-juelich.de/record/851248/files/Jazayeri%20et%20al.%202018%20proofs.pdf$$yOpenAccess
000851248 8564_ $$uhttps://juser.fz-juelich.de/record/851248/files/Jazayeri%20et%20al.%202018%20proofs.gif?subformat=icon$$xicon$$yOpenAccess
000851248 8564_ $$uhttps://juser.fz-juelich.de/record/851248/files/Jazayeri%20et%20al.%202018%20proofs.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000851248 8564_ $$uhttps://juser.fz-juelich.de/record/851248/files/Jazayeri%20et%20al.%202018%20proofs.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000851248 8564_ $$uhttps://juser.fz-juelich.de/record/851248/files/Jazayeri%20et%20al.%202018%20proofs.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000851248 8564_ $$uhttps://juser.fz-juelich.de/record/851248/files/Jazayeri%20et%20al.%202018%20proofs.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000851248 909CO $$ooai:juser.fz-juelich.de:851248$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000851248 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129483$$aForschungszentrum Jülich$$b1$$kFZJ
000851248 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000851248 9141_ $$y2018
000851248 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851248 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOPHYSICS : 2015
000851248 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851248 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851248 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851248 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851248 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000851248 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851248 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851248 920__ $$lyes
000851248 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000851248 980__ $$ajournal
000851248 980__ $$aVDB
000851248 980__ $$aUNRESTRICTED
000851248 980__ $$aI:(DE-Juel1)IBG-3-20101118
000851248 9801_ $$aFullTexts