001     851248
005     20210129234821.0
024 7 _ |a 10.1190/geo2017-0617.1
|2 doi
024 7 _ |a 0016-8033
|2 ISSN
024 7 _ |a 1942-2156
|2 ISSN
024 7 _ |a 2128/19633
|2 Handle
024 7 _ |a WOS:000443597500048
|2 WOS
024 7 _ |a altmetric:47992019
|2 altmetric
037 _ _ |a FZJ-2018-04943
082 _ _ |a 550
100 1 _ |a Jazayeri, Sajad
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Improving estimates of buried pipe diameter and infilling material from ground-penetrating radar profiles with full-waveform inversion
260 _ _ |a Tulsa, Okla.
|c 2018
|b SEG
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1536156402_460
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ground-penetrating radar (GPR) is a widely used tool for the detection and location of buried utilities. Buried pipes generate characteristic diffraction hyperbolas in raw GPR data. Current methods for analyzing the shapes and timing of the diffraction hyperbolas are very effective for locating pipes, but they are less effective for determining the diameter of the pipes, particularly when the pipes are smaller than the radar wavelengths, typically a few tens of centimeters. A full-waveform inversion (FWI) method is described for improving estimates of the diameter of a pipe and confirming the infilling material (air/water/etc.) for the simple case of an isolated diffraction hyperbola on a profile run perpendicular to a pipe with antennas in broadside mode (parallel to the pipe). The technique described here can improve a good initial guess of the pipe diameter (within 30%–50% of the true value) to a better estimate (less than approximately 8% misfit). This method is developed by combining two freely available software packages with a deconvolution method for GPR effective source wavelet estimation. The FWI process is run with the PEST algorithm (model-independent parameter estimation and uncertainty analysis). PEST iteratively calls the gprMax software package for forward modeling of the GPR signal as the model for the pipe and surrounding soil is refined
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Klotzsche, Anja
|0 P:(DE-Juel1)129483
|b 1
|u fzj
700 1 _ |a Kruse, Sarah
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1190/geo2017-0617.1
|g Vol. 83, no. 4, p. H27 - H41
|0 PERI:(DE-600)2033021-2
|n 4
|p H27 - H41
|t Geophysics
|v 83
|y 2018
|x 1942-2156
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/851248/files/Jazayeri%20et%20al.%202018%20proofs.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/851248/files/Jazayeri%20et%20al.%202018%20proofs.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/851248/files/Jazayeri%20et%20al.%202018%20proofs.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/851248/files/Jazayeri%20et%20al.%202018%20proofs.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/851248/files/Jazayeri%20et%20al.%202018%20proofs.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/851248/files/Jazayeri%20et%20al.%202018%20proofs.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:851248
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129483
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOPHYSICS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21