001     851256
005     20240711085642.0
024 7 _ |a 10.1016/j.surfcoat.2017.12.023
|2 doi
024 7 _ |a 0257-8972
|2 ISSN
024 7 _ |a 1879-3347
|2 ISSN
024 7 _ |a WOS:000424720800022
|2 WOS
037 _ _ |a FZJ-2018-04951
082 _ _ |a 620
100 1 _ |a Wang, P.
|0 P:(DE-Juel1)164459
|b 0
|e Corresponding author
245 _ _ |a Monte Carlo simulation of column growth in plasma spray physical vapor deposition process
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1534487023_7789
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Plasma spray-physical vapor deposition is used to produce columnar microstructure coatings under particular operating parameters. Simulations of the growth of columns were carried out through a two-dimensional Monte Carlo model. The modeling was performed using inclined vapor flux impinging onto a substrate due to shadowing effects. An incoming particle travels along a straight line and attaches itself to already deposited particles. Furthermore, the newly deposited particle will relax to a stable surrounding position along the incoming velocity direction. The modeling results predicted the linking of an oblique vapor flux and column orientation. The numerical simulations were validated in three ways. Firstly, the porosity of simulated columns was predicted and compared to that obtained in the experimental columnar microstructure of coatings. Secondly, the morphology of simulated structures is compared to that of experimental coatings produced by plasma spray physical vapor deposition. Finally, the simulated orientation of columns is compared to the experimental one.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a He, W.
|0 P:(DE-Juel1)164460
|b 1
700 1 _ |a Mauer, G.
|0 P:(DE-Juel1)129633
|b 2
|u fzj
700 1 _ |a Mücke, R.
|0 P:(DE-Juel1)129641
|b 3
|u fzj
700 1 _ |a Vaßen, R.
|0 P:(DE-Juel1)129670
|b 4
|u fzj
773 _ _ |a 10.1016/j.surfcoat.2017.12.023
|g Vol. 335, p. 188 - 197
|0 PERI:(DE-600)1502240-7
|p 188 - 197
|t Surface and coatings technology
|v 335
|y 2018
|x 0257-8972
856 4 _ |u https://juser.fz-juelich.de/record/851256/files/1-s2.0-S0257897217312409-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851256/files/1-s2.0-S0257897217312409-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851256/files/1-s2.0-S0257897217312409-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851256/files/1-s2.0-S0257897217312409-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851256/files/1-s2.0-S0257897217312409-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851256/files/1-s2.0-S0257897217312409-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:851256
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129633
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129641
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129670
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SURF COAT TECH : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21