

The Influence of Sampling Methods on Pixel-Wise Hyperspectral Image Classification with 3D Convolutional Neural Networks

Julius Lange¹, Gabriele Cavallaro², Markus Götzl^{2,3}, Ernir Erlingsson³, Morris Riedel^{2,3}

¹ Humboldt University of Berlin

² Jülich Supercomputing Centre, Forschungszentrum Jülich

³ School of Engineering and Natural Sciences, University of Iceland

Outline

Introduction

Proposed Cluster Sampling

Experimental Results

Outline

Introduction

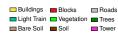
Proposed Cluster Sampling

Experimental Results

Remote Sensing Image Classification

Supervised Learning

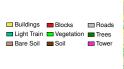
- Annotated samples are available
- Supervised optimization of the classifier parameters
- How to obtain reliable semantic maps from unseen data?



Spectral-Spatial Classifiers

The Value of Spatial Information

- Spectral classifiers: can't deal with high spatial resolution images
- Exploit the spatial autocorrelation of data
- Improving the understanding of remote sensing images

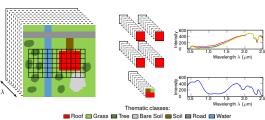


spectral features

Spatial Autocorrelation

Remote Sensing Data

- Spectral dependence degree between a pixel and its neighbors
- Measure of statistical separability between spatial objects
 - Intrinsic property → types of land cover classes
 - 2 Spatial resolution → pixel's size
 - $\begin{tabular}{ll} \hline \textbf{3} & Pre-processing} \rightarrow \textbf{feature engineering, CNNs, etc.} \\ \hline \end{tabular}$

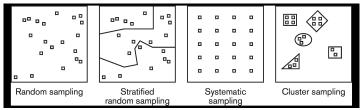


August 21, 2018 g.cavallaro@fz-juelich.de Slide 6

Accuracy Assessment

Sampling Step

- Influenced by:
 - The model of the classifier
 - The sampling scheme
- Groundtruth split into three disjoint sets: training, validation and test
- Sampler determines amount and distribution of samples across the scene
- It can significantly affect the test phase



Member of the Helmholtz-Association

Motivation

What this Work is About

- Practice of training and validating new classifiers within a single image
- Groundtruth split with random sampling
- It was a natural choice for spectral classifier
- Could already violate the independence assumption (bias train and test sets)
 - Inevitable spatial autocorrelation between adjacent pixels
 - Direct neighboring or nearby pixels present in both train and test sets
 - Spatial closeness: information from one set may leak into the respective other

Motivation

What this Work is not About

- Existing datasets have a number of limitations
 - Lack of image variations and diversity
 - Saturation of accuracy

Dataset and Reference	Number of uses
IEEE GRSS 2013 Data Fusion Contest ³³⁸	4
IEEE GRSS 2015 Data Fusion Contest ³³⁹	1
IEEE GRSS 2016 Data Fusion Contest340	2
Indian Pines ³⁴¹	27
Kennedy Space Center ³⁴²	8
Pavia City Center ³⁴³	13
Pavia University ³⁴³	19
Salinas ³⁴⁴	11
Washington DC Mall ³⁴⁵	2

Open-source Hyperspectral datasets used for DL papers, John Ball, 2017 [1]

Motivation

What this Work is not About

- Transfer learning, domain adaptation and active learning
- Recent advancement in EO benchmark data creation

Dataset	Image per class	Scene classes	Total images	Spatial resolution (m)	Image sizes	Year	Refernce
UC Merced Land-Use	100	21	2100	0.3	256x256	2010	[2]
WHU-RS19	50	19	1005	up to 0.5	600x600	2012	[3]
RSSCN7	400	7	2800	-	400x400	2015	[4]
SAT-6		6	405000	1	28x28	2015	[5]
Brazilian Coffee Scene	1438	2	2876	=	64x64	2016	[6]
SIRI-WHU	200	12	2400	2	200x200	2016	[7]
NWPU-RESISC45	700	45	31500	30 to 0.2	256x256	2016	[8]
AID	300	30	10000	0.6	600x600	2017	[9]
EuroSAT	2500	10	27000	10	64x64	2017	[10]
RSI-CB128	36000	=	45	3	128x128	2017	[11]
RSI-CB256	24000	-	35	0.3	256x256	2017	[11]

- Yet not enough (e.g., Imagenet with 14,197,122 images)
- Data variation between train and application phase remains in place

Outline

Introduction

Proposed Cluster Sampling

Experimental Results

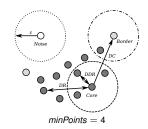
Aims of the Approach

- Capture the full spectral variation of the image
- Reduces overlap between train and test samples due to spatial processing
 - 1 Extract larger contiguous regions using the class labels
 - Distribute them disjointly between the train and test set
- A bias, if present at all, would then only be relevant at the outer edges of such a region, but not for the inner pixels
- More objective and accurate evaluation

DBSCAN

Density-Based Spatial Clustering for Applications with Noise

- Can be used for computing n-connected components in an image
- They can have gaps (ε -sizes), filtered by (minPoints-area)
- Able to detect arbitrarily shaped clusters
- Don't need to know the number of clusters a priori



• Cluster core: point that contains within a spatial search radius ε at least a certain number of neighboring points *minPoints*

Extraction of Contiguous Regions

- Cluster the coordinates of pixels of each of the individual classes
- Each cluster corresponds to one of the identified region of that class
- DBSCAN performs n-connected-component-labeling
 - $\varepsilon = \{1, \sqrt{2}\}$ for 4- and 8-connectivity, respectively
- minPoints serves as threshold for potential gaps
 - i.e. If minPoints < num. of connected components+1 \rightarrow increasingly larger gaps

nber of the Helmholtz-Association

Regions Distribution Between the Train and Test Set Not Efficient Approaches

- Regions could be randomly assigned to either one of the two sets
- However, num. of regions << num. of pixels within each region
- The likelihood of selecting an imbalanced train set rises
 - The set might not contain patterns present in the test set
- Each region could be subdivided into two disjoint parts
 - E.g., the "top" and "bottom"
- However, the number of biased pixels increases along the partition boundary

Regions Distribution Between the Train and Test Set Proposed Approach

- metric function assigns to all regions of a class a partially ordered ranking
- It indicates their assignment priority to the train or test set
- Regions are added to a set until the pixels class split fraction is reached
- The region causing an over pixels assignment is split into two sub-regions

Random sampling

Cluster sampling (area)

Cluster sampling (StdDev)

Outline

Introduction

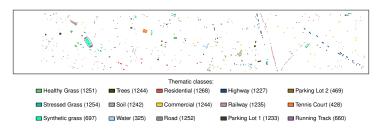
Proposed Cluster Sampling

Experimental Results

Dataset

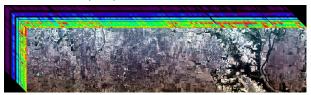
University of Houston - 2013 GRSS data fusion contest

Hyperspectral image (144 spectral bands with 2.5m spatial resolution)



Dataset

Indian Pines - AVIRIS - NASA (1992)



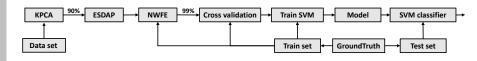
Hyperspectral image (220 spectral bands with 20m spatial resolution)

Thematic classes:									
BareSoil (57)	Corn-MinTill (1049)	Hay (1128)	Soybeans-NS (1110)	Soybeans-NaTill (2157)	Buildings (17195)				
Soybeans-CleanTill (5074)	Soybeans-NaTII-EW (2533)	■ Hay (pre.) (2185)	Corn-MinTill-EW (5629)	Concrete/Asphalt (69)	Corn-MinTill-NS (8862)				
■ Hay-Alfalfa (2258)	Soybeans-CleanTill (pre.) (2726)	Soybeans-NaTill-NS (929)	Corn (17783)	Corn-NatilI (4381)	Lake (224)				
Soybeans-CleanTill-EW (11802)	Soybeans-NaTill-Drilled (8731)	Corn (presumed) (158)	Corn-Natill-EW (1206)	NotCropped (1940)	Soybeans-CleanTill-NS (10387)				
Swampy Area (583)	Corn-EW (514)	Corn-Natil-NS (5685)	Oats (1742)	Soybeans-CleanTill-Drilled (2242)	River (3110)				
Com-NS (2356)	Fescue (114)	Cats (pre.) (335)	Soybeans-CleanTill-Weedy (543)	■ Trees (pre.) (580)	Corn-CleanTill (12404)				
Grass (1147)	Orchard (39)	Soybeans-MinTill (15118)	Wheat (4979)	Corn-CleanTill-EW (26486)	Grass/Trees (2331)				
Pasture (10386)	Soybeans-Drilled (2667)	■ Woods (63562)	Corn-CleanTill-NS (39678)	Grass/Pasture-mowed (19)	Pond (102)				
Soybeans-MinTill (1832)	Unknown (144)	Corn-CleanTill-NS-Irrigated (800)	Grass/Pasture (73)	Soybeans (9391)	Soybeans-MinTill-Drilled (8098)				
Com-CleanTill-NS (pre.) (1728)	Grass-runway (37)	Soybeans (pre.) (894)	Soybeans-MinTill-NS (4953)						

Experimental Setup (1)

Feature Engineering Steps Combined with Support Vector Machine

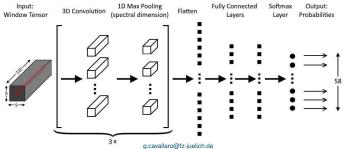
- Data dimensionality reduction
 - Kernel Principal Component Analysis (KPCA)
- Spatial information enhancement
 - Extended Self-Dual Attribute Profiles (ESDAPs)
- Feature extraction
 - Nonparametric Weighted Feature Extraction (NWFE)



Experimental Setup (2)

3D Convolutional Neural Network

Feature	Representation / Value
Conv. Layer Filters	48, 32, 32
Conv. Layer Filter size	(3, 3, 5), (3, 3, 5), (3, 3, 5)
Pooling size	(1, 1, 3), (1, 1, 3), (1, 1, 2)
Dense Layer Neurons	128, 128
Activation Functions	rectified linear unit (ReLU)
Loss Function	mean-squared error (MSE)
Optimization	stochastic gradient descent (SGD)
Training Epochs	600
Batch Size	50
Learning Rate	1.0
Learning Rate Decay	5 × 10 ⁻⁶



Experimental Results

University of Houston

		Feature Engine	ering with SVM	I	3DCNN				
Sampling method	Training set size (%)								Metric
	10	30	60	90	10	30	60	90	
Random	97.68 (0.09)	99.62 (0.03)	99.85 (0.04)	99.90 (0.07)	96.03 (0.42)	98.97 (0.13)	99.51 (0.23)	99.75 (0.14)	OA
	97.73 (0.05)	99.63 (0.02)	99.87 (0.04)	99.96 (0.06)	95.26 (0.49)	98.86 (0.12)	99.40 (0.37)	99.73 (0.24)	AA
	97.54 (0.06)	99.59 (0.02)	99.84 (0.04)	99.89 (0.08)	95.70 (0.46)	98.89 (0.14)	99.47 (0.25)	99.73 (0.16)	Kappa
	97.76 (0.14)	99.61 (0.03)	99.83 (0.04)	99.91 (0.07)	95.60 (0.45)	98.93 (0.13)	98.20 (2.75)	99.74 (0.19)	F1
	50.15	69.49	79.19	82.89	53.90 (2.86)	75.50 (0.66)	83.87 (1.33)	87.06 (0.51)	OA
Size	50.15	69.50	79.21	82.94	59.39 (3.88)	76.59 (0.59)	82.95 (1.13)	86.55 (1.57)	AA
$\varepsilon = \sqrt{2}$ minPoints = 9	46.22	67.07	77.52	81.48	50.41 (3.07)	73.50 (0.71)	82.55 (1.44)	86.01 (0.56)	Kappa
	54.24	70.94	78.95	80.67	53.84 (4.05)	77.18 (1.03)	82.48 (1.96)	85.60 (1.39)	F1
$\begin{array}{c} {\rm StdDev} \\ \varepsilon = \sqrt{2} \\ {\it minPoints} = 9 \end{array}$	63.47	66.62	74.01	80.36	58.50 (0.71)	58.37 (0.69)	70.59 (0.47)	79.36 (2.07)	OA
	63.48	66.62	74.02	80.41	60.15 (2.36)	62.38 (2.33)	72.24 (0.27)	80.95 (2.09)	AA
	60.59	63.97	71.90	78.77	55.19 (0.79)	55.19 (0.76)	68.26 (0.49)	77.68 (2.24)	Kappa
	64.50	67.29	77.38	77.11	55.71 (3.33)	58.74 (2.28)	72.38 (0.50)	79.39 (1.91)	F1

- Random sampling (SVM,3DCNN): average and stddev of five generated training sets
- Cluster sampling (SVM): single run (deterministic sampler)
- Cluster sampling (3DCNN): average and stddev of five random seeds used for the weights initialization

Experimental Results

Indian Pines

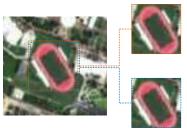
		Feature Engine	ering with SVM	1	3DCNN				
Sampling method	Training set size (%)								
	10	30	60	90	10	30	60	90	Metric
Random	77.83 (0.12)	84.84 (0.09)	87.78 (0.03)	89.10 (0.06)	90.32 (0.89)	96.59 (0.15)	97.89 (0.22)	98.34 (0.45)	OA
	77.83 (0.12)	84.84 (0.09)	87.78 (0.03)	89.10 (0.06)	nan	nan	nan	nan	AA
	75.98 (0.13)	83.61 (0.10)	86.79 (0.03)	88.22 (0.06)	89.54 (0.97)	96.32 (0.16)	97.73 (0.24)	98.21 (0.49)	Kappa
	66.75 (0.50)	76.14 (0.35)	79.91 (0.32)	81.63 (0.05)	70.60 (2.55)	82.39 (1.83)	81.08 (2.33)	81.98 (2.60)	F1
	16.76	17.36	23.77	47.29	28.93 (1.47)	27.92 (1.19)	20.15 (1.65)	33.15 (1.24)	OA
Size	16.76	17.36	23.77	47.29	19.11 (0.00)	16.16 (0.00)	15.26 (0.00)	nan	AA
$\varepsilon = \sqrt{2}$ minPoints = 9	8.33	8.40	14.71	42.75	24.64 (1.36)	23.01 (1.14)	15.59 (1.53)	28.37 (1.22)	Kappa
	nan	nan	nan	nan	14.55 (0.99)	14.47 (1.14)	13.14 (1.83)	18.22 (1.52)	F1
$\begin{array}{c} {\rm StdDev} \\ \varepsilon = \sqrt{2} \\ {\it minPoints} = 9 \end{array}$	17.57	17.05	23.45	43.61	18.38 (0.78)	31.09 (0.47)	32.15 (1.23)	40.56 (1.65)	OA
	17.57	17.05	23.45	43.61	11.79 (0.00)	17.14 (0.00)	21.77 (1.49)	31.37 (0.33)	AA
	6.47	9.86	15.67	39.18	14.01 (0.74)	26.15 (0.41)	27.45 (1.19)	36.68 (1.79)	Kappa
	nan	nan	nan	nan	8.61 (0.60)	13.47 (0.94)	18.56 (0.95)	29.41 (2.81)	F1

- Random sampling (SVM,3DCNN): average and stddev of five generated training sets
- Cluster sampling (SVM): single run (deterministic sampler)
- Cluster sampling (3DCNN): average and stddev of five random seeds used for the weights initialization

Random Sampling Evaluation

Independence Assumption Violated

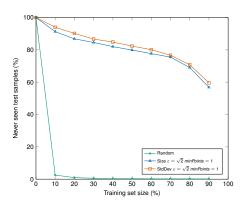
- The pattern recognition problem degrades to an almost memorization issue
- Classifying the same pixel class in the test set based on the previously seen similar instance in the training data is very likely
- Inherent to a variety of machine learning classifiers (SVMs, CNNs, etc.)



(3DCNN: insufficient offset between patches)

Overlap between train and test data

3DCNN - Indian Pines Dataset



Outline

Introduction

Proposed Cluster Sampling

Experimental Results

of the Helmholtz-Association

- Random sampling introduces systematic bias
- Issue for spectral-spatial classifiers (e.g., processing pipelines, CNNs, etc.)
- More dependence between train and test samples leads to higher accuracies
- Proposed controlled sampling approach based on DBSCAN clustering algorithm
- Easy definition of contiguous regions and train-test-set assignment prioritization
- Accuracies on unseen test data closer to an actual out-of-sample performance

Code available at: https://github.com/Markus-Goetz/cluster-sampling

This research has been supported in part by the SIMDAS project and in part by the DEEP-EST project, which have received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreements No. 763558 and No. 754304, respectively.

- [1] J. Ball, D. Anderson, and C. S. Chan, "A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community," SPIE Journal of Applied Remote Sensing (JARS), Special Section on Feature and Deep Learning in Remote Sensing Applications, Sep 2017.
- [2] "Dataset: UC Merced Land Use Computer vision lab." http://weegee.vision.ucmerced.edu/datasets/landuse.html, 2010.
- [3] "DataSet: WHU-RS19." http://www.xinhua-fluid.com/people/yangwen/WHU-RS19.html, 2012.
- [4] "DataSet: RSSCN7." https://www.dropbox.com/s/j80iv1a0mvhonsa/RSSCN7.zip?dl=0, 2015.
- [5] "DataSet: SAT-6 airborne." http://csc.lsu.edu/~saikat/deepsat/, 2015.
- [6] "DataSet: Brazilian Coffee Scenes." http://www.patreo.dcc.ufmg.br/2017/11/12/brazilian-coffee-scenes-dataset/, 2015.
- [7] "DataSet: SIRI-WHU." http://www.lmars.whu.edu.cn/prof_web/zhongyanfei/e-code.html, 2016.
- [8] "DataSet: NWPU-RESISC45." http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html, 2016.
- [9] "DataSet: AID." http://www.lmars.whu.edu.cn/xia/AID-project.html, 2017.
- [10] "DataSet: EuroSAT." http://madm.dfki.de/downloads, 2017.
- [11] "DataSet: RSI-CB." https://github.com/lehaifeng/RSI-CB, 2017.