001     851272
005     20210129234827.0
024 7 _ |a 10.1109/IGARSS.2018.8518671
|2 doi
024 7 _ |a 2128/19910
|2 Handle
037 _ _ |a FZJ-2018-04967
100 1 _ |a Lange, Julius
|0 P:(DE-HGF)0
|b 0
111 2 _ |a IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
|g IGARSS 2018
|c Valencia
|d 2018-07-22 - 2018-07-27
|w Spain
245 _ _ |a The Influence of Sampling Methods on Pixel-Wise Hyperspectral Image Classification with 3D Convolutional Neural Networks
260 _ _ |c 2018
295 1 0 |a IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
300 _ _ |a 2087 - 2090
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1541429841_25759
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a Supervised image classification is one of the essential techniques for generating semantic maps from remotely sensed images.The lack of labeled ground truth datasets, due to the inherent time effort and cost involved in collecting training samples, has led to the practice of training and validating new classifiers within a single image. In line with that, the dominant approach for the division of the available ground truth into disjoint training and test sets is random sampling. This paper discusses the problems that arise when this strategy is adopted in conjunction with spectral-spatial and pixel-wise classifiers such as 3D Convolutional Neural Networks (3D CNN). It is shown that a random sampling scheme leads to a violation of the independence assumption and to the illusion that global knowledge is extracted from the training set.To tackle this issue, two improved sampling strategies based on the Density-Based Clustering Algorithm (DBSCAN) are proposed. They minimize the violation of the train and test samples independence assumption and thus ensure an honest estimation of the generalization capabilities of the classifier.
536 _ _ |a 512 - Data-Intensive Science and Federated Computing (POF3-512)
|0 G:(DE-HGF)POF3-512
|c POF3-512
|f POF III
|x 0
536 _ _ |a DEEP-EST - DEEP - Extreme Scale Technologies (754304)
|0 G:(EU-Grant)754304
|c 754304
|f H2020-FETHPC-2016
|x 1
536 _ _ |a SIMDAS - Upgrade of CaSToRC into a Center of Excellence in Simulation and Data Science (763558)
|0 G:(EU-Grant)763558
|c 763558
|f H2020-WIDESPREAD-04-2017-TeamingPhase1
|x 2
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 1
700 1 _ |a Götz, Markus
|0 P:(DE-Juel1)162390
|b 2
700 1 _ |a Ernir, Erlingsson
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 4
773 _ _ |a 10.1109/IGARSS.2018.8518671
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/851272/files/IGARSS_Lange.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/851272/files/IGARSS_Lange.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/851272/files/IGARSS_Lange.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/851272/files/IGARSS_Lange.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/851272/files/IGARSS_Lange.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/851272/files/IGARSS_Lange.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:851272
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171343
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162390
910 1 _ |a Háskóli Íslands
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132239
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|2 G:(DE-HGF)POF3-500
|v Data-Intensive Science and Federated Computing
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21