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ABSTRACT

Supervised image classification is one of the essential tech-
niques for generating semantic maps from remotely sensed
images. The lack of labeled ground truth datasets, due to the
inherent time effort and cost involved in collecting training
samples, has led to the practice of training and validating new
classifiers within a single image. In line with that, the dom-
inant approach for the division of the available ground truth
into disjoint training and test sets is random sampling. This
paper discusses the problems that arise when this strategy is
adopted in conjunction with spectral-spatial and pixel-wise
classifiers such as 3D Convolutional Neural Networks (3D
CNN). It is shown that a random sampling scheme leads to
a violation of the independence assumption and to the illu-
sion that global knowledge is extracted from the training set.
To tackle this issue, two improved sampling strategies based
on the Density-Based Clustering Algorithm (DBSCAN) are
proposed. They minimize the violation of the train and test
samples independence assumption and thus ensure an honest
estimation of the generalization capabilities of the classifier.

Index Terms— Hyperspectral image classification, sam-
pling strategies, clustering, DBSCAN, deep learning, Convo-
lutional Neural Networks (CNNs)

1. INTRODUCTION

During the past few decades the processing of Earth obser-
vation data through remote sensing techniques has benefited
from advancements in instruments on-board space and air-
borne platforms. Among all the possible products that can be
derived from remote sensing data, classification maps are per-
haps the most often used by many applications. Classification
algorithms are utilized to distinguish between different types
of land-cover classes in order to interpret processes, such as
monitoring of urban growth, impacts of natural disasters, ob-
ject detection, etc. When training samples are available, the
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model parameters of the classifier are learned in a supervised
way. Once the training is completed, the main challenge is to
obtain accurate and reliable semantic maps from previously
unseen data. This capability is usually more influenced by
the amount and quality of the training samples rather than
the model complexity, since classifiers are based on the as-
sumption that training and test samples are generated from
the same feature space and distribution [1]. Remote sensing
data usually present heterogeneous feature spaces and distri-
butions due to differences in acquisition or changes in the na-
ture of the object observed. As a consequence, most of the
statistical models are likely to fail the prediction of new sam-
ples. A straightforward solution to this problem is to rebuilt
from scratch the predictive model using new training data.
However, these samples are usually either collected manually
with ground surveys or automatically generated through im-
age photo interpretation [2]. As a consequence there is a lack
of appropriate benchmark datasets within the community and
the practice of benchmarking new classification algorithms
over a single image remains dominant.

Similarly to Liang et al. [3] and Hansch et al. [4] this pa-
per aims at showing that the extraction of disjointed train and
test sets though a random sampling approach cannot guar-
antee unbiased samples. However, this study considers two
novel aspects. On the one hand, 3D CNNss are investigated as
the spectral-spatial classifier. Due to the way convolutional
neurons process a training sample within a receptive field,
the overlap between the training and testing samples is arti-
ficially enhanced. One the other hand, to alleviate this over-
lapping effect, two alternative sampling strategies based on
the DBSCAN [5] algorithm are proposed. The experiments,
conducted on the full site hyperspectral Indian Pines dataset',
confirm previous findings regarding random sampling tech-
niques [3, 4] and show that the proposed sampling scheme
leads to less biased error estimates. The amplification of the
accuracy brought by the random sampling approach is atten-
uated, i.e., decreased for each class, while the performance
evaluation can be considered fair, unbiased and with a ratio-
nal estimation of the classifier generalization capabilities.
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2. BACKGROUND AND RELATED WORK

In order to reduce the need for and effort in recollecting train-
ing data, recent works have considered solutions based on
transfer learning, domain adaptation and active learning ap-
proaches [6]. These solutions offer the capability of exploit-
ing the knowledge acquired by the available ground reference
samples for classifying new images acquired over heteroge-
neous geographical locations at diverse times with different
sensors. However, Ball et al. [7] provide a summary of the
common open-source hyperspectral datasets that are used for
validating new deep learning classifiers methods. These entail
four datasets, i.e., Indian Pines (small test site), Pavia Univer-
sity, Pavia City Center, and Salinas® and they are saturated in
terms of classification accuracies.

The standard procedure for estimating the generalization
error is to divide the ground truth samples into two disjoint
sets, one for training and one for testing. The error obtained
on the training data should not be considered since it is not
difficult to decrease it to zero given a sufficiently complex
method which can easily memorize the training data. There-
fore, the sampling strategy that is adopted for producing these
disjointed sets has a large influence for the validation phase.
The random sampling strategy has been always considered
as the natural choice, especially for classifiers that ignore the
spatial information. Since spectral classifiers are less effec-
tive when dealing with very high spatial resolution images,
modern classification pipelines include both spectral and spa-
tial information. Recently, deep learning has brought in rev-
olutionary achievements in many applications, including the
processing of remote sensing images [7]. Remarkable results
have been achieved with CNNs due to their hierarchical struc-
ture able to extract more hidden and deeper features. Re-
cently, novel supervised CNNs have been proposed for hy-
perspectral image classification [8, 9]. These cover three-
dimensional models that utilize receptive fields in both do-
mains, spectral and spatial. The majority of these studies
have carried out their experiments on standard hyperspectral
datasets [7] by adopting random sampling strategies.

Researchers usually focus on improving the classifica-
tion performance, while the above discussed problems are
mostly neglected. The increase of spatially correlated data
by spectral-spatial features and its influence on the quality
of the estimate of the generalization error was already dis-
cussed by Zhou ef al. [10]. A more recent work proposed a
sampling scheme that minimizes the spatial overlap between
train and test data [3]. The method aims to capture the full
spectral variation of the image by globally sampling compact
regions. Finally, Hansch et al. [4] evaluated different sam-
pling approaches and proposed a new strategy that simulates
a realistic gap of data variation between train and application
phase. The method proposed in this work is a more flexible
generalization of these two.

Zhttps://g00.gl/QdLmUK

3. PROPOSED METHOD

3.1. Sampling Approaches

The idea of the proposed sampling approach is to minimize
the number of biased samples. Bias occurs when directly
neighboring or nearby pixels are present in both training and
test sets. Due to their spatial closeness, information from one
set may leak into the respective other, violating the indepen-
dence assumption. In case of estimating central pixels based
on a surrounding window mask, for example, spatial recep-
tive fields in training and test data may overlap and be nearly
identical. Correctly classifying a pixel of the same class in the
test set based on the previously seen similar instance in the
training data is very likely. In fact, the classification problem
degrades from an actual pattern recognition to simple mem-
orization. The proposed clustering-based method attempts to
overcome this problem by, first, extracting larger contiguous
regions using the class labels, e.g. buildings, fields, etc., and
then distributing these disjointly between the training and test
set. A bias, if present at all, would then only be relevant at the
outer edges of such a region, but not for the inner pixels.

The extraction of the contiguous regions is achieved with
the DBSCAN [5] clustering algorithm. It detects subgroups
within a set through the recursive evaluation of a neighbor
point density threshold (minPoints) criterion within a para-
metric search radius (¢) around a sample. Thereby, indepen-
dent regions can be determined by clustering the coordinates
of pixels of a particular class. Each resulting cluster directly
corresponds to a region. The distribution of the identified
regions between the training and test set is the next logical
problem to address. In principal these regions could now be
randomly sampled and assigned to either one of the two sets.
However, the count of extracted regions is significantly lower
(in the order of a few dozens) compared to the number of pix-
els. For this reasons, the likelihood of selecting an imbalanced
training set rises strongly, e.g., one that does not contain pat-
terns that are present in the test data, like cloud coverage for
example.

Instead, an approach should be selected that maximizes
the variability in the training set, so that a large number of
potential patterns is covered. This requires to establish a met-
ric that evaluates said variety. The first two, proposed as part
of this work, are the region area size and statistical variance
(0?). Based on this, sorting the regions in ascending, respec-
tively descending order, and assigning them to the training
set, up until the selected split percentage, should result in a
less biased but highly variable pattern distribution. An exam-
ple is depicted in Figure 1. Admittedly, employing the met-
ric on all clustered regions before having splitting them into
training and test data introduces bias itself. Namely, informa-
tion from both, supposedly independent sets, is used to form
them. Being from the same feature space and distribution [1],
this means that the training set, as proposed, is treated favor-
ably. Therefore, an overestimated out-of-sample accuracy on



(a) Random sampling.

(b) Cluster sampling with area.

(c) Cluster sampling with variance.

Fig. 1: Visualization of different sampling strategies exemplified using the class “forest” of the Indian Pines dataset. Black
pixels are background, white training (10% of the available labeled samples) and purple test samples.

the test set should be the result, diminishing the true gener-
alization capabilities. In the worst overestimation case, the
prediction accuracy would be higher than a randomly sam-
pled datasets. For practical applications, though, this bias is
negligible as the experimental evaluation in Section 3.3 show.

3.2. 3D CNN and Dataset

The proposed 3D CNN is designed to perform pixel-wise
classification of hyperspectral images. As input it accepts
spatial-spectral tensors of size (w,w,c) (w window size; ¢
number of spectral bands), exploits the spectral information
and the correlation between neighboring pixels, and predicts
the center pixel. The network is summarized by Table 1 and
includes convolutional-, max-pooling-, fully-connected- and
softmax layers. The triple alternation of convolutional and

Table 1: Complete set of specifications for the 3D CNN (with
583, 962 trainable parameters).

[ Feature | Representation / Value |
Conv. Layer Filters 48,32, 32
Conv. Layer Filter size | (3,3,5), (3,3,5), (3,3,5)
Pooling size (1,1,3),(1,1,3), (1,1,2)
Dense Layer Neurons 128, 128

Activation Functions
Loss Function

rectified linear unit (ReLU)
mean-squared error (MSE)

Optimization stochastic gradient descent (SGD)
Training Epochs 600

Batch Size 50

Learning Rate 1.0

5x 1076

Learning Rate Decay

max pooling layers (i.e., applied to the ¢ dimension) allows
the network to reduce the number of channels and learn spec-
tral features with different levels of abstraction. The output
tensor of these layers is then flattened into a one-dimensional
feature vector and passed to two fully connected layers for the
class probability prediction. A softmax layer with a vector
length corresponding to the total number of classes votes for
the likeliest option. The experiments have been performed
on the JURON pilot system at Jiilich Supercomputing Centre
and the development of the network was performed with the
Keras library (2.0.8) and the TensorFlow (1.3.0) back-end.

The dataset is the Indian Pines hyperspectral image ac-
quired by the AVIRIS sensor in 1992 over an agricultural site
composed of fields with regular geometry and with a variety
of crops. It consists of 614x2166 pixels and 220 spectral
bands, with a spatial resolution of 20m. The ground truth en-
compasses 58 different land-cover classes with a highly im-
balanced density distribution. In the few works that consid-
ered this full size dataset [11], it has been a common practice
to exclude the under-represented classes (e.g., with less than
100 samples) and discard noisy spectral bands. However, this
work considers all the channels and classes in order to test the
robustness of the classifier.

Table 2: Classification results (overall accuracy) of the sam-
pling strategies with different % of training samples.

10 30 60 90 %

Random 0.846 0.932 0971 0974 OA
0.834 0.926 0.966 0972 kappa

Area 0.289 0.323 0.381 0.615 OA
0.231 0.245 0.318 0.581 kappa

Variance 0251 0.334 0358 0389 OA
0.207 0.267 0.285 0.322 kappa

3.3. Experimental Results

Most of the proposed CNN classifiers that considered the In-
dian Pines dataset as a benchmark used the small test site
(16 classes in an area of 145x 145 pixels) with random sam-
pling strategies for dividing training and test samples. This
leads to a vast number of classifiers that provided near perfect
classification accuracy. When considering the full test site of
Indian Pines, the state-of-the art classification accuracy (i.e.,
k = 0.84 with 30% of the data to train with 20 classes and 20
channels excluded) was achieved by Romero et al. [11]. They
proposed to use a greedy layer-wise unsupervised pre-training
on deep CNNs coupled with a an algorithm for unsupervised
learning of sparse features (i.e., Enforcing Lifetime and Popu-
lation Sparsity - EPLS). The classification results achieved by
the proposed 3D CNN are depicted by Table 2 and show that
with only 10% of the available samples for training it was al-
ready possible to obtain x = 0.83. These results confirm that
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Fig. 2: Percentage of unbiased samples for the different sam-
pling strategies with window tensor size w equal to nine.

random sampling approaches can always achieve the best re-
sults. However, the plot depicted by Figure 2 gives a clear
explanation for these achievements. When considering the
random strategy, the number of independent samples (i.e., not
seen during the learning phase) are already less than 1% for a
training set of 10%. On the contrary, the proposed sampling
strategies allow to maintain an acceptable level of indepen-
dence even for training set with higher amount of samples.
On the one hand, this leads to worse classification results, as
shown in Table 2. On the other hand, these numbers are a
more trustworthy representation of how the resulting model
could perform in real world applications, e.g., a usable trans-
ferable classifier. The classifier is unable to learn all the pos-
sible data variations like the same image acquired in different
seasons. The gap of data variation between train and applica-
tion phase remains in place.

4. CONCLUSIONS

The influence of different sampling strategies on the perfor-
mance of pixel-wise image classification has been evaluated.
Confirming previous research, the widely used random sam-
pling approach violates the independence assumption due to
the introduction of systematic bias. This is particular true for
current state-of-the-art CNNs and the spatial overlaps in their
receptive fields. The proposed sampling approaches using the
DBSCAN clustering algorithm minimizes said bias and re-
sults in a classification accuracy on unseen test data closer to
an actual out-of-sample performance.

In line with this observation, a more wide-spread adapta-
tion of none-random sampling approaches for remote sensing
classification problems stands to reason. Particularly, for
transfer learning and concept drift problems the relevance
of the presented findings is apparent. For the future, it is
planned that other datasets are investigated using the pro-
posed method. A similar classification accuracy performance
degradation is to be expected. It will be of interest to fur-
ther investigate the influence of the proposed and then added
sorting metrics for the regions on the classifier performance.
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