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1 Humboldt University of Berlin, Germany
2 Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany
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ABSTRACT

Supervised image classification is one of the essential tech-

niques for generating semantic maps from remotely sensed

images. The lack of labeled ground truth datasets, due to the

inherent time effort and cost involved in collecting training

samples, has led to the practice of training and validating new

classifiers within a single image. In line with that, the dom-

inant approach for the division of the available ground truth

into disjoint training and test sets is random sampling. This

paper discusses the problems that arise when this strategy is

adopted in conjunction with spectral-spatial and pixel-wise

classifiers such as 3D Convolutional Neural Networks (3D

CNN). It is shown that a random sampling scheme leads to

a violation of the independence assumption and to the illu-

sion that global knowledge is extracted from the training set.

To tackle this issue, two improved sampling strategies based

on the Density-Based Clustering Algorithm (DBSCAN) are

proposed. They minimize the violation of the train and test

samples independence assumption and thus ensure an honest

estimation of the generalization capabilities of the classifier.

Index Terms— Hyperspectral image classification, sam-

pling strategies, clustering, DBSCAN, deep learning, Convo-

lutional Neural Networks (CNNs)

1. INTRODUCTION

During the past few decades the processing of Earth obser-

vation data through remote sensing techniques has benefited

from advancements in instruments on-board space and air-

borne platforms. Among all the possible products that can be

derived from remote sensing data, classification maps are per-

haps the most often used by many applications. Classification

algorithms are utilized to distinguish between different types

of land-cover classes in order to interpret processes, such as

monitoring of urban growth, impacts of natural disasters, ob-

ject detection, etc. When training samples are available, the
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model parameters of the classifier are learned in a supervised

way. Once the training is completed, the main challenge is to

obtain accurate and reliable semantic maps from previously

unseen data. This capability is usually more influenced by

the amount and quality of the training samples rather than

the model complexity, since classifiers are based on the as-

sumption that training and test samples are generated from

the same feature space and distribution [1]. Remote sensing

data usually present heterogeneous feature spaces and distri-

butions due to differences in acquisition or changes in the na-

ture of the object observed. As a consequence, most of the

statistical models are likely to fail the prediction of new sam-

ples. A straightforward solution to this problem is to rebuilt

from scratch the predictive model using new training data.

However, these samples are usually either collected manually

with ground surveys or automatically generated through im-

age photo interpretation [2]. As a consequence there is a lack

of appropriate benchmark datasets within the community and

the practice of benchmarking new classification algorithms

over a single image remains dominant.

Similarly to Liang et al. [3] and Hansch et al. [4] this pa-

per aims at showing that the extraction of disjointed train and

test sets though a random sampling approach cannot guar-

antee unbiased samples. However, this study considers two

novel aspects. On the one hand, 3D CNNs are investigated as

the spectral-spatial classifier. Due to the way convolutional

neurons process a training sample within a receptive field,

the overlap between the training and testing samples is arti-

ficially enhanced. One the other hand, to alleviate this over-

lapping effect, two alternative sampling strategies based on

the DBSCAN [5] algorithm are proposed. The experiments,

conducted on the full site hyperspectral Indian Pines dataset1,

confirm previous findings regarding random sampling tech-

niques [3, 4] and show that the proposed sampling scheme

leads to less biased error estimates. The amplification of the

accuracy brought by the random sampling approach is atten-

uated, i.e., decreased for each class, while the performance

evaluation can be considered fair, unbiased and with a ratio-

nal estimation of the classifier generalization capabilities.

1https://purr.purdue.edu/publications/1947/1



2. BACKGROUND AND RELATED WORK

In order to reduce the need for and effort in recollecting train-

ing data, recent works have considered solutions based on

transfer learning, domain adaptation and active learning ap-

proaches [6]. These solutions offer the capability of exploit-

ing the knowledge acquired by the available ground reference

samples for classifying new images acquired over heteroge-

neous geographical locations at diverse times with different

sensors. However, Ball et al. [7] provide a summary of the

common open-source hyperspectral datasets that are used for

validating new deep learning classifiers methods. These entail

four datasets, i.e., Indian Pines (small test site), Pavia Univer-

sity, Pavia City Center, and Salinas2 and they are saturated in

terms of classification accuracies.

The standard procedure for estimating the generalization

error is to divide the ground truth samples into two disjoint

sets, one for training and one for testing. The error obtained

on the training data should not be considered since it is not

difficult to decrease it to zero given a sufficiently complex

method which can easily memorize the training data. There-

fore, the sampling strategy that is adopted for producing these

disjointed sets has a large influence for the validation phase.

The random sampling strategy has been always considered

as the natural choice, especially for classifiers that ignore the

spatial information. Since spectral classifiers are less effec-

tive when dealing with very high spatial resolution images,

modern classification pipelines include both spectral and spa-

tial information. Recently, deep learning has brought in rev-

olutionary achievements in many applications, including the

processing of remote sensing images [7]. Remarkable results

have been achieved with CNNs due to their hierarchical struc-

ture able to extract more hidden and deeper features. Re-

cently, novel supervised CNNs have been proposed for hy-

perspectral image classification [8, 9]. These cover three-

dimensional models that utilize receptive fields in both do-

mains, spectral and spatial. The majority of these studies

have carried out their experiments on standard hyperspectral

datasets [7] by adopting random sampling strategies.

Researchers usually focus on improving the classifica-

tion performance, while the above discussed problems are

mostly neglected. The increase of spatially correlated data

by spectral-spatial features and its influence on the quality

of the estimate of the generalization error was already dis-

cussed by Zhou et al. [10]. A more recent work proposed a

sampling scheme that minimizes the spatial overlap between

train and test data [3]. The method aims to capture the full

spectral variation of the image by globally sampling compact

regions. Finally, Hansch et al. [4] evaluated different sam-

pling approaches and proposed a new strategy that simulates

a realistic gap of data variation between train and application

phase. The method proposed in this work is a more flexible

generalization of these two.

2https://goo.gl/QdLmUK

3. PROPOSED METHOD

3.1. Sampling Approaches

The idea of the proposed sampling approach is to minimize

the number of biased samples. Bias occurs when directly

neighboring or nearby pixels are present in both training and

test sets. Due to their spatial closeness, information from one

set may leak into the respective other, violating the indepen-

dence assumption. In case of estimating central pixels based

on a surrounding window mask, for example, spatial recep-

tive fields in training and test data may overlap and be nearly

identical. Correctly classifying a pixel of the same class in the

test set based on the previously seen similar instance in the

training data is very likely. In fact, the classification problem

degrades from an actual pattern recognition to simple mem-

orization. The proposed clustering-based method attempts to

overcome this problem by, first, extracting larger contiguous

regions using the class labels, e.g. buildings, fields, etc., and

then distributing these disjointly between the training and test

set. A bias, if present at all, would then only be relevant at the

outer edges of such a region, but not for the inner pixels.

The extraction of the contiguous regions is achieved with

the DBSCAN [5] clustering algorithm. It detects subgroups

within a set through the recursive evaluation of a neighbor

point density threshold (minPoints) criterion within a para-

metric search radius (ε) around a sample. Thereby, indepen-

dent regions can be determined by clustering the coordinates

of pixels of a particular class. Each resulting cluster directly

corresponds to a region. The distribution of the identified

regions between the training and test set is the next logical

problem to address. In principal these regions could now be

randomly sampled and assigned to either one of the two sets.

However, the count of extracted regions is significantly lower

(in the order of a few dozens) compared to the number of pix-

els. For this reasons, the likelihood of selecting an imbalanced

training set rises strongly, e.g., one that does not contain pat-

terns that are present in the test data, like cloud coverage for

example.

Instead, an approach should be selected that maximizes

the variability in the training set, so that a large number of

potential patterns is covered. This requires to establish a met-

ric that evaluates said variety. The first two, proposed as part

of this work, are the region area size and statistical variance

(σ2). Based on this, sorting the regions in ascending, respec-

tively descending order, and assigning them to the training

set, up until the selected split percentage, should result in a

less biased but highly variable pattern distribution. An exam-

ple is depicted in Figure 1. Admittedly, employing the met-

ric on all clustered regions before having splitting them into

training and test data introduces bias itself. Namely, informa-

tion from both, supposedly independent sets, is used to form

them. Being from the same feature space and distribution [1],

this means that the training set, as proposed, is treated favor-

ably. Therefore, an overestimated out-of-sample accuracy on



(a) Random sampling. (b) Cluster sampling with area. (c) Cluster sampling with variance.

Fig. 1: Visualization of different sampling strategies exemplified using the class “forest” of the Indian Pines dataset. Black

pixels are background, white training (10% of the available labeled samples) and purple test samples.

the test set should be the result, diminishing the true gener-

alization capabilities. In the worst overestimation case, the

prediction accuracy would be higher than a randomly sam-

pled datasets. For practical applications, though, this bias is

negligible as the experimental evaluation in Section 3.3 show.

3.2. 3D CNN and Dataset

The proposed 3D CNN is designed to perform pixel-wise

classification of hyperspectral images. As input it accepts

spatial-spectral tensors of size (w,w, c) (w window size; c

number of spectral bands), exploits the spectral information

and the correlation between neighboring pixels, and predicts

the center pixel. The network is summarized by Table 1 and

includes convolutional-, max-pooling-, fully-connected- and

softmax layers. The triple alternation of convolutional and

Table 1: Complete set of specifications for the 3D CNN (with

583, 962 trainable parameters).

Feature Representation / Value

Conv. Layer Filters 48, 32, 32

Conv. Layer Filter size (3, 3, 5), (3, 3, 5), (3, 3, 5)
Pooling size (1, 1, 3), (1, 1, 3), (1, 1, 2)
Dense Layer Neurons 128, 128

Activation Functions rectified linear unit (ReLU)

Loss Function mean-squared error (MSE)

Optimization stochastic gradient descent (SGD)

Training Epochs 600

Batch Size 50

Learning Rate 1.0

Learning Rate Decay 5× 10−6

max pooling layers (i.e., applied to the c dimension) allows

the network to reduce the number of channels and learn spec-

tral features with different levels of abstraction. The output

tensor of these layers is then flattened into a one-dimensional

feature vector and passed to two fully connected layers for the

class probability prediction. A softmax layer with a vector

length corresponding to the total number of classes votes for

the likeliest option. The experiments have been performed

on the JURON pilot system at Jülich Supercomputing Centre

and the development of the network was performed with the

Keras library (2.0.8) and the TensorFlow (1.3.0) back-end.

The dataset is the Indian Pines hyperspectral image ac-

quired by the AVIRIS sensor in 1992 over an agricultural site

composed of fields with regular geometry and with a variety

of crops. It consists of 614×2166 pixels and 220 spectral

bands, with a spatial resolution of 20m. The ground truth en-

compasses 58 different land-cover classes with a highly im-

balanced density distribution. In the few works that consid-

ered this full size dataset [11], it has been a common practice

to exclude the under-represented classes (e.g., with less than

100 samples) and discard noisy spectral bands. However, this

work considers all the channels and classes in order to test the

robustness of the classifier.

Table 2: Classification results (overall accuracy) of the sam-

pling strategies with different % of training samples.

10 30 60 90 %

Random
0.846 0.932 0.971 0.974 OA

0.834 0.926 0.966 0.972 kappa

Area
0.289 0.323 0.381 0.615 OA

0.231 0.245 0.318 0.581 kappa

Variance
0.251 0.334 0.358 0.389 OA

0.207 0.267 0.285 0.322 kappa

3.3. Experimental Results

Most of the proposed CNN classifiers that considered the In-

dian Pines dataset as a benchmark used the small test site

(16 classes in an area of 145×145 pixels) with random sam-

pling strategies for dividing training and test samples. This

leads to a vast number of classifiers that provided near perfect

classification accuracy. When considering the full test site of

Indian Pines, the state-of-the art classification accuracy (i.e.,

κ = 0.84 with 30% of the data to train with 20 classes and 20

channels excluded) was achieved by Romero et al. [11]. They

proposed to use a greedy layer-wise unsupervised pre-training

on deep CNNs coupled with a an algorithm for unsupervised

learning of sparse features (i.e., Enforcing Lifetime and Popu-

lation Sparsity - EPLS). The classification results achieved by

the proposed 3D CNN are depicted by Table 2 and show that

with only 10% of the available samples for training it was al-

ready possible to obtain κ = 0.83. These results confirm that
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Fig. 2: Percentage of unbiased samples for the different sam-

pling strategies with window tensor size w equal to nine.

random sampling approaches can always achieve the best re-

sults. However, the plot depicted by Figure 2 gives a clear

explanation for these achievements. When considering the

random strategy, the number of independent samples (i.e., not

seen during the learning phase) are already less than 1% for a

training set of 10%. On the contrary, the proposed sampling

strategies allow to maintain an acceptable level of indepen-

dence even for training set with higher amount of samples.

On the one hand, this leads to worse classification results, as

shown in Table 2. On the other hand, these numbers are a

more trustworthy representation of how the resulting model

could perform in real world applications, e.g., a usable trans-

ferable classifier. The classifier is unable to learn all the pos-

sible data variations like the same image acquired in different

seasons. The gap of data variation between train and applica-

tion phase remains in place.

4. CONCLUSIONS

The influence of different sampling strategies on the perfor-

mance of pixel-wise image classification has been evaluated.

Confirming previous research, the widely used random sam-

pling approach violates the independence assumption due to

the introduction of systematic bias. This is particular true for

current state-of-the-art CNNs and the spatial overlaps in their

receptive fields. The proposed sampling approaches using the

DBSCAN clustering algorithm minimizes said bias and re-

sults in a classification accuracy on unseen test data closer to

an actual out-of-sample performance.

In line with this observation, a more wide-spread adapta-

tion of none-random sampling approaches for remote sensing

classification problems stands to reason. Particularly, for

transfer learning and concept drift problems the relevance

of the presented findings is apparent. For the future, it is

planned that other datasets are investigated using the pro-

posed method. A similar classification accuracy performance

degradation is to be expected. It will be of interest to fur-

ther investigate the influence of the proposed and then added

sorting metrics for the regions on the classifier performance.
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