000851274 001__ 851274
000851274 005__ 20210129234827.0
000851274 0247_ $$2Handle$$a2128/19642
000851274 037__ $$aFZJ-2018-04969
000851274 041__ $$aEnglish
000851274 1001_ $$0P:(DE-Juel1)173026$$aHaruzi, Peleg$$b0$$eCorresponding author$$ufzj
000851274 1112_ $$a4th Cargese Summer School$$cCargese$$d2018-06-25 - 2018-07-07$$wFrance
000851274 245__ $$aTESTING THE POTENTIAL OF GPR-FWI TO DETECT TRACER PLUMES IN TIME-LAPSE MONITORING
000851274 260__ $$c2018
000851274 3367_ $$033$$2EndNote$$aConference Paper
000851274 3367_ $$2BibTeX$$aINPROCEEDINGS
000851274 3367_ $$2DRIVER$$aconferenceObject
000851274 3367_ $$2ORCID$$aCONFERENCE_POSTER
000851274 3367_ $$2DataCite$$aOutput Types/Conference Poster
000851274 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1536236690_17883$$xAfter Call
000851274 502__ $$cRWTH Aachen
000851274 520__ $$aGeophysical methods are increasingly being used in hydrogeological studies, allowing to characterize the structure and the heterogeneity of the subsurface in a noninvasive way. Transport processes could be monitored using these methods when the tracer changes the geophysical properties of the aquifer (e.g. electrical conductivity, permittivity) and when these changes can be resolved in space and time. Ground penetration radar (GPR) measurements processed by the full-waveform inversion (FWI) method allow mapping the subsurface with a decimeter scale resolution. Time-lapse GPR imaging of saline tracer in fractured rock demonstrated the potential to monitor transport processes (e.g. Shakas et al., 2016). In the current research, a time-lapse GPR imaging of a saline tracer test is planned in an alluvial aquifer, to test the potential of GPR to detect transport processes.The experiment will be performed in a sand-gravel aquifer at the Krauthausen test site, nearby Jülich where we will inject a saline tracer into the aquifer through a borehole and transported by natural groundwater flow. Time-lapse GPR data will be acquired in a crosshole setup to monitor the tracer distribution. To optimize the imaging and detection of the tracer plume, a numerical test simulating the field experiment in a hydrogeological model of the aquifer was applied using a flow and transport model and a GPR wave propagation forward model. The numerical experiment simulates the plume spread in time and space, and the signals that are measured with GPR. An appraisal of the spatial resolution of the tracer distribution that can be obtained with GPR is derived from a comparison between the simulated tracer distributions and the tracer distributions obtained after a full waveform inversion of the GPR signals. Preliminary results of the transport simulation show a narrow plume with high salinity gradients at the decimeter scale, which performs the importance of the prediction for optimizing geophysical imaging and interpretation. At the next steps of the simulation, GPR forward modeling followed by FWI will be applied while adjusting the tracer concentrations, radar frequencies, and crosshole locations to optimize imaging of the field experiment.
000851274 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000851274 536__ $$0G:(EU-Grant)722028$$aENIGMA - European training Network for In situ imaGing of dynaMic processes in heterogeneous subsurfAce environments (722028)$$c722028$$fH2020-MSCA-ITN-2016$$x1
000851274 7001_ $$0P:(DE-Juel1)158035$$aGüting, Nils$$b1
000851274 7001_ $$0P:(DE-Juel1)129483$$aKlotzsche, Anja$$b2$$ufzj
000851274 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b3$$ufzj
000851274 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b4$$ufzj
000851274 7001_ $$0P:(DE-Juel1)129561$$avan der Kruk, Jan$$b5$$ufzj
000851274 8564_ $$uhttps://juser.fz-juelich.de/record/851274/files/Cargese_summer_school_poster-1.pdf$$yOpenAccess
000851274 8564_ $$uhttps://juser.fz-juelich.de/record/851274/files/Cargese_summer_school_poster-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000851274 909CO $$ooai:juser.fz-juelich.de:851274$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
000851274 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173026$$aForschungszentrum Jülich$$b0$$kFZJ
000851274 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129483$$aForschungszentrum Jülich$$b2$$kFZJ
000851274 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b3$$kFZJ
000851274 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b4$$kFZJ
000851274 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129561$$aForschungszentrum Jülich$$b5$$kFZJ
000851274 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000851274 9141_ $$y2018
000851274 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000851274 920__ $$lyes
000851274 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000851274 980__ $$aposter
000851274 980__ $$aVDB
000851274 980__ $$aUNRESTRICTED
000851274 980__ $$aI:(DE-Juel1)IBG-3-20101118
000851274 9801_ $$aFullTexts