000851305 001__ 851305
000851305 005__ 20240619091238.0
000851305 0247_ $$2doi$$a10.1063/1.5035464
000851305 0247_ $$2ISSN$$a0003-6951
000851305 0247_ $$2ISSN$$a1077-3118
000851305 0247_ $$2Handle$$a2128/20915
000851305 0247_ $$2WOS$$aWOS:000440813000019
000851305 0247_ $$2altmetric$$aaltmetric:45836682
000851305 037__ $$aFZJ-2018-04995
000851305 082__ $$a530
000851305 1001_ $$0P:(DE-Juel1)171354$$aLiang, Sijia$$b0$$eCorresponding author
000851305 245__ $$aSurface acoustic waves in strain-engineered K0.7Na0.3NbO3 thin films
000851305 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2018
000851305 3367_ $$2DRIVER$$aarticle
000851305 3367_ $$2DataCite$$aOutput Types/Journal article
000851305 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547049980_3109
000851305 3367_ $$2BibTeX$$aARTICLE
000851305 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851305 3367_ $$00$$2EndNote$$aJournal Article
000851305 520__ $$aEpitaxial K0.7Na0.3NbO3 thin films are grown via metal-organic chemical vapor deposition on (110)-oriented TbScO3. The films are strained due to the substrate–film lattice mismatch and therefore exhibit a strong and anisotropic modification of all its ferroelectric properties. The compressive in-plane strain leads to a reduction of the ferroelectric transition temperature from approximately 700 K for unstrained K0.7Na0.3NbO3 to 324 K and 330 K with maximum permittivities of 10 270 and 13 695 for the main crystallographic directions [001]TSO and [110]TSO, respectively. Moreover, the quite thin films (approx. 30 nm thick) exhibit very large piezoelectric properties. For instance, surface acoustic waves with intensities of up to 4.7 dB are recorded for wave propagation along the [110]TSO direction. The signal is smaller (up to 1.3 dB) along [001]TSO, whilst for the intermediate direction [112]TSO, the signal seems to vanish (<0.1 dB). The results indicate that the choice of material, (K,Na)NbO3, in combination with strain-engineering via epitaxial growth onto lattice-mismatched substrates represents a promising way to optimize ferroelectric materials for piezoelectric thin-film applications.
000851305 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000851305 588__ $$aDataset connected to CrossRef
000851305 7001_ $$0P:(DE-Juel1)161308$$aDai, Yang$$b1
000851305 7001_ $$0P:(DE-HGF)0$$avon Helden, L.$$b2
000851305 7001_ $$00000-0002-8919-3608$$aSchwarzkopf, J.$$b3
000851305 7001_ $$0P:(DE-Juel1)128749$$aWördenweber, R.$$b4
000851305 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.5035464$$gVol. 113, no. 5, p. 052901 -$$n5$$p052901 -$$tApplied physics letters$$v113$$x1077-3118$$y2018
000851305 8564_ $$uhttps://juser.fz-juelich.de/record/851305/files/1.5035464-1.pdf$$yPublished on 2018-07-30. Available in OpenAccess from 2019-07-30.
000851305 8564_ $$uhttps://juser.fz-juelich.de/record/851305/files/1.5035464-1.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-07-30. Available in OpenAccess from 2019-07-30.
000851305 909CO $$ooai:juser.fz-juelich.de:851305$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000851305 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171354$$aForschungszentrum Jülich$$b0$$kFZJ
000851305 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128749$$aForschungszentrum Jülich$$b4$$kFZJ
000851305 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000851305 9141_ $$y2018
000851305 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851305 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851305 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000851305 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2015
000851305 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851305 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851305 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851305 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851305 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851305 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851305 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851305 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000851305 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851305 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000851305 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000851305 9801_ $$aFullTexts
000851305 980__ $$ajournal
000851305 980__ $$aVDB
000851305 980__ $$aI:(DE-Juel1)ICS-8-20110106
000851305 980__ $$aI:(DE-82)080009_20140620
000851305 980__ $$aUNRESTRICTED
000851305 981__ $$aI:(DE-Juel1)IBI-3-20200312