000851308 001__ 851308
000851308 005__ 20240313095005.0
000851308 037__ $$aFZJ-2018-04998
000851308 041__ $$aEnglish
000851308 1001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b0$$eCorresponding author$$ufzj
000851308 1112_ $$aNeuroinformatics 2018$$cMontreal$$d2018-08-09 - 2018-08-10$$wCanada
000851308 245__ $$aCollaborative HPC-enabled workflows on the HBP Collaboratory using the Elephant framework
000851308 260__ $$c2018
000851308 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1540385005_3258
000851308 3367_ $$033$$2EndNote$$aConference Paper
000851308 3367_ $$2BibTeX$$aINPROCEEDINGS
000851308 3367_ $$2DRIVER$$aconferenceObject
000851308 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000851308 3367_ $$2ORCID$$aOTHER
000851308 520__ $$aThe degree of complexity in analyzing massively parallel, heterogeneous data from electrophysiological experiments and network simulations requires work to be performed in larger, multi-disciplinary collaborations that require the availability of robust workflows [1,2] and powerful computing resources [3]. The Human Brain Project (HBP) aims at creating and operating a scientific research infrastructure for the neurosciences to address such needs for integrative software environments. At its core, the HBP features the Collaboratory, a web-based platform to jointly implement research projects. Powerful as this approach is in theory, it is less clear how these developments are most effectively integrated into the daily work routines of the researchers analyzing the data.Here, we show how diverse tools can be successfully combined into a collaborative analysis workflow hosted on the HBP Collaboratory, reproducing [5]. Data are represented in the Neo framework [6], complex metadata [7] are managed using the odML standard [8], and the main analysis is performed by the Elephant library (http://python-elephant.org). These domain-specific tools are combined with generic tools (e.g., version control systems) to form a blueprint for performing collaborative work including access to high-performance computing. Finally, we outline how these building blocks can be assembled into formalized workflows to support reproducible research, e.g., the validation of network simulations.References:[1] Badia, R., Davison, A., Denker, M., Giesler, A., Gosh, S., Goble, C., Grewe, J., Grün, S., Hatsopoulos, N., LeFranc, Y. and Muller, J., 2015. INCF Program on Standards for data sharing: new perspectives on workflows and data management for the analysis of electrophysiological data. https://www. incf.org/about-us/history/incf-scientific-workshops.[2] Denker, M. and Grün, S., 2015. Designing workflows for the reproducible analysis of electrophysiological data. In International Workshop on Brain-Inspired Computing (pp. 58-72). Springer, Cham.[3] Bouchard, K.E., Aimone, J.B., Chun, M., Dean, T., Denker, M., Diesmann, M., Donofrio, D.D., Frank, L.M., Kasthuri, N., Koch, C., et al. (2016). High-Performance Computing in Neuroscience for Data-Driven Discovery, Integration, and Dissemination. Neuron 92, 628–631.[4] Senk, J., Yegenoglu, A. et al., 2016. A Collaborative Simulation-Analysis Workflow for Computational Neuroscience Using HPC. In Jülich Aachen Research Alliance (JARA) High-Performance Computing Symposium (pp. 243-256). Springer, Cham.[5] Denker, M., Zehl, L., Kilavik, B.E., Diesmann, M., Brochier, T., Riehle, A., and Grün, S. (2018). LFP beta amplitude is linked to mesoscopic spatio-temporal phase patterns. Scientific Reports 8, 5200.[6] Garcia, S., Guarino, D., Jaillet, F., Jennings, T.R., Pröpper, R., Rautenberg, P.L., Rodgers, C., Sobolev, A., Wachtler, T., Yger, P. and Davison, A.P., 2014. Neo: an object model for handling electrophysiology data in multiple formats. Frontiers in neuroinformatics, 8, p.10.
000851308 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000851308 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
000851308 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x2
000851308 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x3
000851308 7001_ $$0P:(DE-Juel1)161462$$aYegenoglu, Alper$$b1$$ufzj
000851308 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b2$$ufzj
000851308 8564_ $$uhttps://doi.org/10.12751/incf.ni2018.0019
000851308 909CO $$ooai:juser.fz-juelich.de:851308$$pec_fundedresources$$pVDB$$popenaire
000851308 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b0$$kFZJ
000851308 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161462$$aForschungszentrum Jülich$$b1$$kFZJ
000851308 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b2$$kFZJ
000851308 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000851308 9141_ $$y2018
000851308 920__ $$lno
000851308 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000851308 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000851308 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000851308 980__ $$aabstract
000851308 980__ $$aVDB
000851308 980__ $$aI:(DE-Juel1)INM-6-20090406
000851308 980__ $$aI:(DE-Juel1)IAS-6-20130828
000851308 980__ $$aI:(DE-Juel1)INM-10-20170113
000851308 980__ $$aUNRESTRICTED
000851308 981__ $$aI:(DE-Juel1)IAS-6-20130828