000851318 001__ 851318
000851318 005__ 20210129234838.0
000851318 0247_ $$2doi$$a10.1088/1361-6420/aad7c4
000851318 0247_ $$2ISSN$$a0266-5611
000851318 0247_ $$2ISSN$$a1361-6420
000851318 0247_ $$2Handle$$a2128/19659
000851318 0247_ $$2WOS$$aWOS:000442228100001
000851318 037__ $$aFZJ-2018-05004
000851318 041__ $$aEnglish
000851318 082__ $$a530
000851318 1001_ $$0P:(DE-Juel1)169421$$aKleefeld, Andreas$$b0
000851318 245__ $$aComputing interior transmission eigenvalues for homogeneous and anisotropic media
000851318 260__ $$aBristol [u.a.]$$bInst.$$c2018
000851318 3367_ $$2DRIVER$$aarticle
000851318 3367_ $$2DataCite$$aOutput Types/Journal article
000851318 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1595507379_4402
000851318 3367_ $$2BibTeX$$aARTICLE
000851318 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851318 3367_ $$00$$2EndNote$$aJournal Article
000851318 520__ $$aThe method of fundamental solutions is investigated in a stabilized version for the computation of interior transmission eigenvalues in two dimensions for homogeneous and anisotropic media without voids. This approach has already proven to be very competitive in practice for the isotropic framework among regular scattering shapes and keeps predominating through its simplicity as being mesh- and integration free. We give a new approximation analysis, present various numerical results and show that the eigenvalue spectrum for isotropic scatterers is generally different from the corresponding anisotropic borderline cases.
000851318 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000851318 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1
000851318 588__ $$aDataset connected to CrossRef
000851318 7001_ $$0P:(DE-Juel1)168537$$aPieronek, Lukas$$b1$$eCorresponding author
000851318 773__ $$0PERI:(DE-600)1477292-9$$a10.1088/1361-6420/aad7c4$$gVol. 34, no. 10, p. 105007 -$$n10$$p105007$$tInverse problems$$v34$$x1361-6420$$y2018
000851318 8564_ $$uhttps://juser.fz-juelich.de/record/851318/files/Kleefeld_2018_Inverse_Problems_34_105007.pdf$$yRestricted
000851318 8564_ $$uhttps://juser.fz-juelich.de/record/851318/files/MFS_ansotropic_2Di.pdf$$yOpenAccess
000851318 8564_ $$uhttps://juser.fz-juelich.de/record/851318/files/Kleefeld_2018_Inverse_Problems_34_105007.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851318 8564_ $$uhttps://juser.fz-juelich.de/record/851318/files/MFS_ansotropic_2Di.gif?subformat=icon$$xicon$$yOpenAccess
000851318 8564_ $$uhttps://juser.fz-juelich.de/record/851318/files/MFS_ansotropic_2Di.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000851318 8564_ $$uhttps://juser.fz-juelich.de/record/851318/files/MFS_ansotropic_2Di.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000851318 8564_ $$uhttps://juser.fz-juelich.de/record/851318/files/MFS_ansotropic_2Di.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000851318 8564_ $$uhttps://juser.fz-juelich.de/record/851318/files/MFS_ansotropic_2Di.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000851318 909CO $$ooai:juser.fz-juelich.de:851318$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000851318 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b0$$kFZJ
000851318 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168537$$aForschungszentrum Jülich$$b1$$kFZJ
000851318 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000851318 9141_ $$y2018
000851318 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851318 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851318 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINVERSE PROBL : 2015
000851318 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851318 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851318 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851318 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851318 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000851318 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851318 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851318 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000851318 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851318 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000851318 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851318 920__ $$lyes
000851318 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000851318 980__ $$ajournal
000851318 980__ $$aVDB
000851318 980__ $$aI:(DE-Juel1)JSC-20090406
000851318 980__ $$aUNRESTRICTED
000851318 9801_ $$aFullTexts