
Computing interior transmission eigenvalues for

homogeneous and anisotropic media

Andreas Kleefeld and Lukas Pieronek‡
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Abstract. The method of fundamental solutions is investigated in a

stabilized version for the computation of interior transmission eigenvalues

in two dimensions for homogeneous and anisotropic media without voids.

This approach has already proven to be very competitive in practice

for the isotropic framework among regular scattering shapes and keeps

predominating through its simplicity as being mesh- and integration free.

We give a new approximation analysis, present various numerical results

and show that the eigenvalue spectrum for isotropic scatterers is generally

different from the corresponding anisotropic borderline cases.
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1. Introduction

Interior transmission eigenvalues (ITEs) arise necessarily in the study of inverse

scattering problems as a criterion for exclusion to make conventional qualitative methods

work — at least from a theoretical perspective, see [19, 5]. As such, on the one hand

they are impractical for interactive experiments with penetrable (anisotropic) media, see

[6, 18, 17], but on the other hand their individual magnitudes themselves also encode

basic information about the scatterer’s interior and thus exhibit applications in non-

destructive testing, cf. [8, 14]. For both purposes it is crucial to understand their

mathematical structure and to be able to compute them with high accuracy. Since the

latter seems to lag a little behind the theory for homogeneous and anisotropic media,

this paper is to present a relatively easy algorithm for the calculation of corresponding

ITEs in 2D.

Our incorporated technique is a synthesis of the method of fundamental solutions

(MFS) and a stabilization scheme as first presented in [2] which together result

‡ Author to whom any correspondence should be addressed.
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in a robust Trefftz collocation method. Other currently used approaches for the

computation of anisotropic ITEs are usually executed by the boundary element method,

see [23, 20, 15], or by the finite element method, see [9, 12, 16, 15], which are as such

not meshless. Despite its simplicity, our advanced MFS version has already proven

to be a great success for many ordinary but isotropic scatterers, see [21], and can still

provide very accurate results in the anisotropic case, offering a partial alternative for the

open conclusion in [9]. Further features to be optionally adopted within our proposed

algorithm are the recovery of the eigenvalue’s multiplicity from the discretized setting

as well as their approximate eigenfunctions that can be alternatively used to investigate

local properties similar to [3].

Although almost identical in the numerical implementation, the underlying

eigenproblem associated with ITEs, the interior transmission problem (ITP), classifies as

a non-selfadjoint and non-elliptic PDE system and fundamentally distinguishes between

the isotropic and the anisotropic scenario through the required regularity assumptions of

the assigned eigenfunctions. This calls for an individual approximation theory compared

to [21] and is therefore analyzed below for two of the theoretically most investigated

anisotropy classes. For the first time, our numerical results then also show that in both

regimes the corresponding borderline ITEs behave completely different even though the

constitutive parameters approach the same isotropic setup. A final excursion for the

disc as representative scatterer then reveals the nature of this erratic behavior in that

special case.

The remainder of this paper is structured as follows: In section 2 we will recall the

ITP and introduce the general MFS setup for computing ITEs including its practical

implementation. We investigate the approximation aspects for our method from the

abstract ITP function space perspective in section 3 and present then our computational

results for a variety of scattering objects in section 4 where we focus on four different

anisotropic cases. A final conclusion will summarize the pros and cons of our proposed

algorithm.

2. Problem setup

2.1. Modeling the homogeneous and anisotropic ITP

Let the penetrable scatterer D be mathematically represented by a simply connected

and bounded region in 2D with Lipschitz boundary ∂D. Further we denote the constant

index of refraction by n > 0 whose anisotropic structure is reflected by the symmetric

positive definite matrix A ∈ R2×2. Its eigenvalues

A∗ := min
ξ∈R2

|ξ|=1

(ξ · Aξ) , A∗ := max
ξ∈R2

|ξ|=1

(ξ · Aξ)
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are assumed to satisfy either A∗ > 1 or A∗ < 1. The ITP for anisotropic media then

reads: Find k ∈ C\{0} such that there exist non-trivial solutions v, w ∈ H1(D) to

div(A∇w) + k2nw = 0 in D ,

∆v + k2v = 0 in D ,

w = v on ∂D ,

∂νAw = ∂νv on ∂D .

(1)

In this case, k is called an ITE. Here ∂νS• := ν · (S∇•) denotes the co-normal derivative

for any symmetric S ∈ R2×2. The system (1) emerges, for example, as a special case

of the 3D time-harmonic electromagnetic scattering problem if D has planar symmetry

which then reduces the setup to our scalar Helmholtz case for the propagating field

components, see [9, 7]. Note the improved Sobolev regularity assumptions of v, w

separately in comparison with the ITP for isotropic media which is now due to the

perturbation of w in the highest order Laplacian term by the anisotropy A. Since the

resulting PDE system generally prevents a transformation into a fourth order elliptic

equation then, the eigenproblem analysis requires a different, variational approach for

which H1(D) turns out to provide the conventional Fredholm framework again with its

typical existence and uniqueness results under the above distinction of A∗ and A∗, see

[10, 22]. It reads for the ITP in (1)∫
D

−A∇w · ∇ϕ+∇v · ∇ψ + k2nwϕ− k2vψ dx = 0 ,

where ϕ, ψ ∈ H1(D) are test functions such that (ϕ − ψ) ∈ H1
0 (D). In what follows,

we try to find approximations of ITEs k by seeking for a sequence of approximate

eigenfunctions solving the above equation modulo boundary terms which should vanish

in some limiting procedure.

2.2. Solving the ITP: MFS vs. modified MFS

We apply the MFS, sometimes called the method of auxiliary sources or charge

simulation method, for the computation of approximate ITEs as already approved in the

context of isotropic media, see [21]. Given the ITP with constant constitutive coefficients

n,A and the generic positive wave number κ to represent k in (1), the main idea of the

MFS is to look for radial basis functions divided into

Vm = {ϕ1, . . . , ϕm} , Wm = {ψ1, . . . , ψm}

which solve the given PDE for v and w from the ITP exactly, but generally not the

prescribed boundary data yet, respectively. Specific to the MFS is the particular choice

of the trial functions ϕj(·) = Φκ(·, yj) and ψj(·) = Ψκ(·, yj) which are based upon the

corresponding fundamental solution Φκ or Ψκ of the underlying PDE in (1). More

precisely, since two variables are associated with each fundamental solution in which
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it is symmetric, we will use the first one as the functional argument on D to fulfill

the constraining PDE and freeze the second one as a parameter to generate linear

independent solutions. For the latter we take some fixed exterior contour Γ, also called

the artificial (source) boundary and which must lie disjoint from D to make collocation

work without inner singularities. Then we pick m distinct source points {yj}1≤j≤m ⊂ Γ

which thus determine the dimension of both Vm and Wm. By linearity of the PDEs

involved, we can approximate our eigenfunctions now by proper linear combinations

vm(·) =
m∑
j=1

cΦ(yj)Φκ(·, yj) , wm(·) =
m∑
j=1

cΨ(yj)Ψκ(·, yj) (2)

and, to prepare for a more compact matrix notation, we define the associated coefficient

vector cm ∈ C2m by

cm =
(
cΦ(y1), . . . , cΦ(ym),−cΨ(y1), . . . ,−cΨ(ym)

)>
,

whose optimal choice in the sense of the MFS we will discuss next.

The canonical MFS tries to determine this coefficient vector by matching m

boundary collocation points {sj}1≤j≤m ⊂ ∂D such that both vm(sj) − wm(sj) ≈ 0

and ∂ν(vm(sj) − wm(sj)) ≈ 0 are fulfilled for all j. This results in a quadratic linear

system which, for the purpose of our actual eigenproblem, might tempt us to call those

κ an approximate ITE admitting some non-trivial cm. To understand why this leads to

a numerical pitfall, we identify (2) as discrete realizations of the single layer operator

given by

ŜΦ(κ) : cΦ 7→
∫

Γ

Φκ(·, y)cΦ(y) ds(y) , (3)

ŜΨ(κ) : cΨ 7→
∫

Γ

Ψκ(·, y)cΨ(y) ds(y) , (4)

which map continuous coefficient functions cΦ, cΨ ∈ L2(Γ) into the space of ITP interior

solutions, respectively. Due to compactness of these operators (when their ranges are

endowed with any proper Sobolev norm on ∂D), we know that the task of finding (cΦ, cΨ)

given any boundary function results in an ill-posed problem for every κ. Therefore, the

standard MFS as the discrete analogon suffers very early from ill-conditioning effects

such as spurious eigenvalue detection, see [21].

In 2005, Betcke and Trefethen came up with an effective remedy for a related

problem in their paper [2]. They realized that pure boundary collocation calculus ignores

any contribution from the eigenfunction’s behavior in the domain D itself and thus

indirectly supports the ill-posedness of the underlying boundary operator formulation

mentioned above. With a trick based on the QR decomposition, they proposed to add

an implicit constraint in form of a relatively large interior norm to the trial functions

whose adapted implementation we now summarize for our anisotropic MFS-ITP context

and which we will refer to as the modified MFS :
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Sample mI fixed (with respect to m) interior points {xj}1≤j≤mI
⊂ D and define the

following block matrix associated to our trial functions

T (κ) =



SΦ(κ) SΨ(κ)

∂νSΦ(κ) ∂νSΨ(κ)

S̃Φ(κ) 0

∂1S̃Φ(κ) 0

∂2S̃Φ(κ) 0

0 S̃Ψ(κ)

0 ∂1S̃Ψ(κ)

0 ∂2S̃Ψ(κ)


∈ C(2m+6mI)×2m , (5)

where the upper dense lines correspond to the boundary part from the standard MFS

(SΦ(κ))i,j = Φκ(si, yj) , 1 ≤ i, j ≤ m ,

(∂νSΦ(κ))i,j = ∂νΦκ(si, yj) , 1 ≤ i, j ≤ m

and where the diagonal lower part consists of interior point evaluations(
S̃Φ(κ)

)
i,j

= Φκ(xi, yj) , 1 ≤ i ≤ mI , 1 ≤ j ≤ m ,(
∂1S̃Φ(κ)

)
i,j

= ∂1Φκ(xi, yj) , 1 ≤ i ≤ mI , 1 ≤ j ≤ m ,(
∂2S̃Φ(κ)

)
i,j

= ∂2Φκ(xi, yj) , 1 ≤ i ≤ mI , 1 ≤ j ≤ m .

Note that all appearing derivatives on the right-hand sides of our block definitions are

understood with respect to the first argument of Φκ. The same notation takes over for

Φκ being replaced by Ψκ analogously. We then perform the celebrated QR factorization

of the system matrix

T (κ) = Q(κ)R(κ) =

(
QB(κ)

QI(κ)

)
R(κ) , R(κ), QB(κ) ∈ C2m×2m ,

which thus constrains our trial functions to a total norm of 1 as the cumulative

contribution of boundary and interior points. The final step is to extract back only

the boundary part QB of the unitary matrix factor and minimize its smallest singular

vector locally in κ, i.e.

Minimize κ 7−→ min
r∈C2m,|r|=1

|QB(κ)r| = |QB(κ)rm| ≡ σ1(κ) , κ ∈ U ⊂ R>0 . (6)

The purpose of the introduction for the auxiliary set U is to separate the detection of

distinct eigenvalues. Note that if σ1(κ) is sufficiently close to zero for some κ = km, this

indeed indicates the approximation of some real ITE since we have found superposed
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MFS trial functions with small boundary misfit along its m collocation points according

to

σ1(km) = |QB(κ)rm| =

√√√√ m∑
i=1

(vm(si)− wm(si))2 + (∂ν(vm(si)− wm(si)))2 , (7)

where (vm, wm) are determined via rm = R(κ)cm. We then call km an approximate ITE

and (vm, wm) its approximate eigenfunction pair.

3. Approximation analysis for ITEs

The MFS is a powerful tool to approximate solutions of a given eigenproblem with

constant coefficients, since the only condition left to control in the computational

procedure are the prescribed boundary data. To talk about convergence in terms of

(3) and (4), it will be necessary to consider the MFS from a more abstract perspective

in which collocation as our numerical indicator for residual quantities is replaced by

certain integral norms to be kept small. In order to avoid confusion between the two

versions, we will refer to the latter as the continuous MFS.

3.1. Preliminaries

The first crucial observation we make is that for constant coefficients both PDEs to

be solved within the ITP are Helmholtz equations in disguise. While this assertion is

obvious for the component v, it also applies for w by a pull-back argument which we

will discuss in the following. First recall that A is symmetric positive definite so there

also exists a unique symmetric positive definite root A
1
2 such that A

1
2A

1
2 = A. Then we

set

DA := A−
1
2D . (8)

The following lemma shows that the anisotropic PDE for w solved within the ITP on

D is equivalent to a pure Helmholtz equation on DA.

Lemma 1. The function w ∈ H1(D) is a solution of div(A∇w) + κ2nw = 0 in

D if and only if its pull-back wA ∈ H1(DA) defined by wA(·) := w(A
1
2 ·) solves

∆wA + κ2nwA = 0 on DA. Likewise, if Φκ
√
n is the fundamental solution of the

Helmholtz equation with wave number κ
√
n, Ψκ(x, y) := detA−

1
2 Φκ

√
n(A−

1
2x,A−

1
2y)

solves div(A∇Ψκ(·, y)) + κ2nΨκ(·, y) = δy(·) in the sense of distributions.

Proof. For the first assertion, one can either exploit elliptic interior regularity and check

the identities directly by applying the corresponding second order differential operators

pointwise, or one can use the definition of distributional solutions in combination with

the transformation formula, which then proves the entire lemma. For the latter define
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the linear mapping L(x) := A−
1
2x and associate for any test function ϕ ∈ H1

0 (D) its

pull-back by ϕA := ϕ ◦L−1. Then the two PDEs under consideration are connected via∫
DA

∇wA · ∇ϕA − κ2nwAϕA dxA

=

∫
DA

A
1
2 (∇w ◦ L−1) · ∇ϕA − κ2n(w ◦ L−1)ϕA dxA

= detA−
1
2

∫
D

A
1
2∇w · ∇ϕA ◦ L− κ2nwϕA ◦ L dx

= detA−
1
2

∫
D

A
1
2∇w · A

1
2∇ϕ− κ2nwϕ dx

= detA−
1
2

∫
D

A∇w · ∇ϕ− κ2nwϕ dx .

The explicit determination of fundamental solutions for PDEs with varying

coefficients might generally require individual and tedious computations. However, the

lemma above shows that the A-dependent family of equations for the function w can

be easily reduced to the natural Helmholtz case with its known fundamental solution

indexed by κ. Therefore we can now specify our ansatz functions from (2): The 2D

(radiating) fundamental solution of the Helmholtz equation is given by

Φκ(x, y) =
i

4
H

(1)
0 (κ|x− y|) ,

where H
(1)
0 is the Hankel function of the first kind of order zero. According to the above

lemma, we know that Ψκ is given by

Ψκ(x, y) := detA−
1
2 Φκ

√
n(A−

1
2x,A−

1
2y) .

3.2. The anisotropic ITP under continuous measurements

We adopt the guidelines from [21] to be checked within the following approximation

analysis but point out that we now require new techniques to prove the corresponding

results in the anisotropic case due to the deviating regularity assumptions of ITP

eigenfunctions. According to the MFS setup, Φκ and Ψκ as given above will generate

our approximation space of eigenfunction candidates. Recall that these trial functions

exactly solve the interior but generally not the coupled boundary conditions. So the

following inhomogeneous ITP perfectly suits our current situation

div(A∇w̃) + κ2nw̃ = 0 in D ,

∆ṽ + κ2ṽ = 0 in D ,

ṽ − w̃ = f̃ on ∂D ,

∂ν ṽ − ∂νAw̃ = g̃ on ∂D .

(9)



Computing ITEs for homogeneous and anisotropic media 8

Since the single layer operators from (3)–(4) restricted to D are produced by smooth

kernels, the derived MFS even generates classical solution candidates of the above system

in

HA :=
⋃

κ∈R>0

HA(κ) ,

where

HA(κ) :=
{

(ṽ, w̃) ∈ C∞(D)× C∞(D) : div(A∇w̃) + κ2nw̃ = 0 , ∆ṽ + κ2ṽ = 0
}
.

The next theorem demonstrates that if we apply the continuous MFS, to be clarified

then, with successive output {km}m∈N that is assumed to form a Cauchy sequence, their

limit point k is indeed a real ITE. In particular, no spurious eigenvalues will arise as

accumulation points.

Theorem 2. Assume {(vm, wm, km)}m∈N ⊂ HA×R>0 and {(θDm, θNm)}m∈N ⊂ H
1
2 (∂D)×

H−
1
2 (∂D) with the above restrictions on A are such that the following conditions hold:

(i) eigenvalue convergence: km −→ k 6= 0 ,

(ii) uniform interior bound: C−1 <
(
‖vm‖2

H1(D) + ‖wm‖2
H1(D)

)
< C for some C > 1

and for all m large enough,

(iii) approximate ITP: (ṽ, w̃, f̃ , g̃, κ) = (vm, wm, θ
D
m, θ

N
m, km) is a solution of (9) for all

m large enough with identical refractive index n > 0 and asymptotically vanishing

boundary data
(
‖θDm‖H 1

2 (∂D)
+ ‖θNm‖H− 1

2 (∂D)

)
−→ 0 for m→∞.

Then, there exists a non-trivial weak solution (v, w) ∈ HA of (1) with interior

transmission eigenvalue k.

Proof. Because of the uniform interior bounds with respect to H1(D) we may apply

weak compactness to show that the limit is indeed a non-trivial eigenfunction with ITE

k. Without relabeling a possibly extracted subsequence, we assume that

vm ⇀ v in H1(D) , wm ⇀ w in H1(D) .

Since vm, wm fulfill (9) strongly by assumption, they are also weak solutions of the

following variational equation when testing against ϕ, ψ ∈ H1(D) such that (ϕ − ψ) ∈
H1

0 (D). We thus obtain∫
D

−A∇wm · ∇ϕ+∇vm · ∇ψ + k2
mnwmϕ− k2

mvmψ dx =

∫
∂D

(∂νAwm − ∂νvm)ϕ ds

and thanks to our asymptotically vanishing boundary data we obtain by the duality

product ∫
∂D

(∂νAwm − ∂νvm)ϕ ds ≤ ‖ϕ‖
H

1
2 (∂D)

‖∂νAwm − ∂νvm‖H− 1
2 (∂D)

.
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As the right-hand side of the latter tends to zero for m → ∞, we see that by (i) the

pair (v, w) indeed solves (1) in the weak form∫
D

−A∇w · ∇ϕ+∇v · ∇ψ + k2nwϕ− k2vψ dx = 0

and further ∂νAw = ∂νv holds in the sense of H−
1
2 traces. The fact that (v−w) ∈ H1

0 (D)

follows from the continuity of the trace operator τ : H1(D) → H
1
2 (∂D) and Ker τ =

H1
0 (D) applied to the bounded sequence {(vm − wm)}m∈N ⊂ H1(D). Thus we are left

to prove that (v, w) is non-trivial.

For this purpose we first note that due to our assumptions on A, k, n being real-

valued, we may continue the proof with either the real or the imaginary parts of

(vm, wm) depending on which choice still fulfills the uniform lower bound in (ii) infinitely

often (with a possibly larger constant C > 1). For simplicity we will not relabel the

reduced approximate eigenfunctions in the sequel. Then we observe that if we have a

corresponding estimate for the weaker L2(D) norm, i.e.

lim inf
m→∞

(
‖vm‖2

L2(D) + ‖wm‖2
L2(D)

)
> 0 ,

our eigenfunction candidate (v, w) will immediately be non-trivial by its definition

as weak H1(D)-limit which is compactly embedded in L2(D). Therefore, we assume

contrarily that there exists a subsequence, not relabeled, such that

lim
m→∞

(
‖vm‖2

L2(D) + ‖wm‖2
L2(D)

)
= 0 , (10)

which implies that our uniform lower bound from (ii) is now completely concentrated

on the gradients,

lim inf
m→∞

(
‖∇vm‖2

L2(D) + ‖∇wm‖2
L2(D)

)
≥ C > 0 . (11)

Since vm is a strong solution of the Helmholtz equation with wave number km, we may

use integration by parts against ψ ∈ H1(D) to obtain∫
D

∇vm · ∇ψ dx =

∫
D

k2
mvmψ dx+

∫
∂D

∂νvmψ ds .

Since the trace operator τ : H1(D) → H
1
2 (∂D) is right-invertible, duality shows with

supm ‖vm‖2
H1(D) < C and proper dual elements ψ that supm ‖∂νvm‖H− 1

2 (∂D)
< ∞. The

same equation but with the choice ψ = vm − wm =: um therefore also gives∫
D

∇vm · ∇um dx =

∫
D

k2
mvmum dx+

∫
∂D

∂νvmum ds .

Note that the above right-hand side vanishes for m → ∞ due to (10) and (iii), so we

obtain the relation

lim
m→∞

∫
D

∇vm · ∇um dx = 0 . (12)
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For the remainder of the proof we try to find a contradiction with (12) by incorporating

our explicit assumptions on the eigenvalues of A. First note that um can also be

characterized as a weak solution of the system

div(A∇um) + k2
mnum = div((A− I)∇vm) + k2

m(n− 1)vm in D ,

um = θDm on ∂D ,

∂νAu = ∂ν(A−I)
vm + θNm on ∂D ,

whose variational form reads for any ψ ∈ H1(D)∫
D

(
− A∇um + (A− I)∇vm

)
· ∇ψ dx =

∫
D

k2
m

(
(n− 1)vm − num

)
ψ dx+

∫
∂D

θNmψ ds .

(13)

Assume first that A∗ > 1. Choosing ψ = wm in (13) and taking the limit m → ∞
yields with (12), (10) and some uniform upper bound on ‖wm‖H 1

2 (∂D)
by continuity of

the trace operator

0 = lim
m→∞

∫
D

(
− A∇um + (A− I)∇vm

)
· ∇wm dx

= lim
m→∞

∫
D

(
− A∇um + (A− I)∇(um + wm)

)
· ∇wm dx

= lim
m→∞

∫
D

(
(A− I)∇wm −∇um

)
· ∇wm dx

= lim
m→∞

∫
D

(A− I)∇wm · ∇wm −∇um · ∇(vm − um) dx

= lim
m→∞

∫
D

(A− I)∇wm · ∇wm + |∇um|2dx− lim
m→∞

∫
D

∇vm · ∇um dx

= lim
m→∞

∫
D

(A− I)∇wm · ∇wm + |∇um|2dx

≥ lim
m→∞

(
(A∗ − 1)‖∇wm‖2

L2(D) + ‖∇um‖2
L2(D)

)
.

Therefore ∇wm → 0 in L2(D) and since ∇um → 0 in L2(D) as well, we may conclude

lim
m→∞

(
‖∇vm‖2

L2(D) + ‖∇wm‖2
L2(D)

)
= 0 ,

which is a contradiction to (11) in the case A∗ > 1. If A∗ < 1, we first rewrite (12) in

the following way

0 = lim
m→∞

−
∫
D

∇vm · ∇um dx

= lim
m→∞

∫
D

(−A+ A− I)∇vm · ∇um dx

= lim
m→∞

∫
D

−A∇um · ∇vm + (A− I)∇vm · ∇um dx
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and observe that a combination of (13) with ψ = vm and ψ = um, respectively, yields

thanks to (10) and the vanishing boundary data

lim
m→∞

∫
D

−A∇um · ∇vm + (A− I)∇vm · ∇um dx

= lim
m→∞

∫
D

(I − A)∇vm · ∇vm + A∇um · ∇um dx .

Putting both equations together gives

0 = lim
m→∞

∫
D

(I − A)∇vm · ∇vm + A∇um · ∇um dx

≥ lim
m→∞

(
(1− A∗)‖∇vm‖2

L2(D) + A∗‖∇um‖2
L2(D)

)
.

This again implies by positive definiteness of A that

lim
m→∞

(
‖∇vm‖2

L2(D) + ‖∇wm‖2
L2(D)

)
= 0 ,

which also contradicts (11) in the case A∗ < 1.

Up to this point we know that the output of the continuous MFS recovers real ITEs

k in the limiting process. However, it is not clear yet whether every eigenvalue admits

an approximation sequence fulfilling the listed assumptions within Theorem 2. So the

question arises if our trial functions are sufficiently dense. Unlike isotropic media, the

definition of ITP eigenfunctions in the anisotropic case allows for interior conditions

formulated in the energy space H1(D) for v and w separately which naturally imply

the required regularity for the boundary data. In other words, (v − w) is a priori as

good as v and w each which directly enables us to consider the approximation problem

componentwise. Since by Lemma 1 both interior conditions of the ITP are of Helmholtz

type we may restrict our density analysis to the model equation of v first.

Theorem 3. The range of the single layer operator ŜΦ(κ) from (3) is dense in

A(κ) := {h ∈ H1(D) : ∆h+ κ2h = 0} for all wave numbers κ > 0.

Proof. We aim to show that for fixed κ > 0 the (Hilbert) adjoint of ŜΦ(κ) given by

Ŝ∗Φ(κ) : A(κ)→ L2(Γ)

h 7→ Ŝ∗Φ(κ)h =

∫
D

Φκ(x, ·)h(x) +∇xΦκ(x, ·) · ∇h(x) dx

is injective on A(κ) which would then give the desired density result according to the

fact that the null space of Ŝ∗Φ(κ) equals the H1(D)-orthogonal complement of the range

of ŜΦ(κ). Hence, we assume that h ∈ A(κ) is such that Ŝ∗Φ(κ)h = 0. This means that

the function h̃ := Ŝ∗Φ(κ)h ∈ H1
loc(R2), which extends to R2 naturally as the outcome of a

convolution, vanishes along Γ and inherits the Sommerfeld radiation condition from Φκ

and ∇xΦκ. As h̃ is also a solution of the exterior Helmholtz problem with zero boundary
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data along Γ, uniqueness and analyticity guarantees that h̃|Dc = 0 so that we actually

identify h̃ ∈ H1
0 (D). This implies on the one hand, since h ∈ A(κ), that∫

D

−∇h̃ · ∇h+ κ2h̃h dx = 0 . (14)

On the other hand, we can find a sequence {hm}m∈N of smooth and compactly supported

functions in R2 such that hm → h in H1(D). Now we can compute using integration by

parts without boundary contributions as well as the fundamental solution property of

the kernel Φκ∫
D

−∇h̃ · ∇h+ κ2h̃h dx

= lim
m→∞

∫
R2

−∇h̃ · ∇hm + κ2h̃hm dx

= lim
m→∞

∫
R2

h̃(∆hm + κ2hm) dx

= lim
m→∞

∫
R2

(∫
D

Φκ(y, x)h(y) +∇yΦκ(y, x) · ∇h(y) dy

)
(∆hm + κ2hm) dx

= lim
m→∞

∫
R2

∫
D

Φκ(y, x)h(y) dy (∆hm + κ2hm)−
∫
D

∇xΦκ(y, x) · ∇h(y) dy (∆hm + κ2hm) dx

= lim
m→∞

∫
R2

∫
D

Φκ(y, x)h(y) dy (∆ + κ2)hm +

∫
D

Φκ(y, x)∇h(y) dy · (∆ + κ2)∇hm dx

= lim
m→∞

∫
R2

(∆x + κ2)

∫
D

Φκ(y, x)h(y) dy hm + (∆x + κ2)

∫
D

Φκ(y, x)∇h(y) dy · ∇hm dx

= lim
m→∞

∫
R2

(−1Dh)hm + (−1D∇h) · ∇hm dx

=− ‖h‖H1(D) .

Combining the latter with (14), we conclude ‖h‖H1(D) = 0 and that ŜΦ(κ) is

injective.

The corresponding density result for w is now immediate with a pull-back argument

for the artificial boundary.

Corollary 4. The range of the single layer operator ŜΨ(κ) from (4) is dense in

AA(κ) := {h ∈ H1(D) : div(A∇h) + κ2nh = 0} for all wave numbers κ > 0.

Proof. Let w ∈ AA(κ) be arbitrary. By Lemma 1 we know that wA := w◦L−1 ∈ H1(DA)

solves ∆wA+κ2nwA = 0 on DA, where the transformed scatterer was defined in (8) and

L(x) := A−
1
2x. Analogue to that we also associate a surrounding artificial boundary

by ΓA := L(Γ). Then Theorem 3 guarantees the existence of a sequence {gAm}m∈N such

that the functions

wAm(xA) :=

∫
ΓA

Φκ(x
A, yA)gAm(yA) ds(yA), xA ∈ DA
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have the approximation property wAm → wA in H1(DA). Using the transformation

formula for curvilinear coordinates, e.g. [13], wAm can be expressed in terms of our

integral operator from (4)∫
ΓA

Φκ(x
A, yA)gAm(yA) ds(yA)

=

∫
Γ

Φκ(x
A, A−

1
2y)gAm(A−

1
2y)|A−

1
2ν(y)|detA−

1
2 ds(y)

=

∫
Γ

(
detA−

1
2 Φκ(x

A, A−
1
2y)
)(

gAm(A−
1
2y)|A−

1
2ν(y)|

)
ds(y)

=

∫
Γ

Ψκ(A
1
2xA, y)gm(y) ds(y) ,

where we set gm(y) := gAm(A−
1
2y)|A− 1

2ν(y)| for our transformed coefficient functions.

Therefore wm := wAm ◦ L = ŜΨ(κ)gm generates a sequence in the range of ŜΨ(κ) which

approximates w in H1(D) according to

‖wAm − wA‖2
H1(DA)

=

∫
DA

|wAm − wA|2 dxA +

∫
DA

|∇wAm −∇wA|2 dxA

=

∫
D

detA−
1
2 |(wAm − wA) ◦ L|2 dx+

∫
D

detA−
1
2 |(∇wAm −∇wA) ◦ L|2 dx

= detA−
1
2

(∫
D

|wm − w|2 dx+

∫
DA

|A
1
2 (∇wm −∇w)|2 dx

)
≥ detA−

1
2 min{1,

√
A∗}

(∫
D

|wm − w|2 dx+

∫
DA

|(∇wm −∇w)|2 dx

)
= detA−

1
2 min{1,

√
A∗}‖wm − w‖2

H1(D) .

4. Numerical results

In this section, we compute ITEs for a variety of anisotropic scatterers and thereby

analyze the effects on the eigenvalues of perturbing the material parameters within the

ITP.

4.1. Computing ITEs with the modified MFS

In previous papers the challenge to compute concrete ITEs for homogeneous and

anisotropic media in 2D were either encountered with pure focus on that purpose, see

[20], or as a byproduct of solving the actual inverse electromagnetic scattering problem

in 3D under certain symmetry assumptions, see [9] for example. They use boundary

element methods and finite element methods, respectively, to discretize the underlying

problem whose results we will take as benchmark values to see how competitive the
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Figure 1. Different ITE behavior for the unit disc D near κ = 0 with parameters

n = 4 and A∗ = A∗ = a being slightly larger or smaller than 1.

modified MFS is for the anisotropic ITP. However, we would like to go a little further

and focus more closely on the cases A∗ > 1 and A∗ < 1 which turn out to be also

significantly different from a numerical perspective instead of only disjoint auxiliary

situations to guarantee the conventional Fredholm setting in theory. To see this, let us

fix n = 4 and assume that A = diag(a, a) with a ∈ {0.99, 1.0, 1.01}, i.e. we perturb

the homogeneous isotropic case with respect to the anisotropic coefficient a slightly

both from below and above. Figure 1 was generated for D being the unit disc and

for MFS parameter m = 20,mI = 10, whose associated points lie equidistantly on

concentric circles inside (radius=0.5) and outside (radius=5) of D, respectively. As

evanescent valleys of the smallest-singular-value-function shall indicate the existence of

ITEs according to Theorem 2 and (7) for m → ∞, these snapshots already show that

while the trivial ITE k = 0 with its infinite dimensional eigenspace for a = 1 is uniformly

isolated if a < 1, there seems to be an accumulation of eigenvalues around zero for a > 1,

consisting of 9 ones so far. Since the corresponding ITP is rotationally symmetric

here, we may even compute the eigenvalues almost analytically using a Fourier-Bessel-

expansion, see [5]. Accordingly, we need to solve

det

(
Jp(κ) Jp

(√
n
a
κ
)

κJ ′p(κ)
√
naκJ ′p

(√
n
a
κ
)) = 0 ,

where Jp is the Bessel function of first kind of order p ∈ N (note the primes appearing

in the bottom line of the matrix denote outer derivatives of the Bessel function) and
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Figure 2. With identical input data as in Figure 1 except for a larger number of

collocation points m, additional minima come into play for a = 1.01, while the two

graphs for a ≤ 1 keep rather unchanged.

whose positive roots in κ coincide with those of

gp(κ, a) = fp(κ)−
fp(
√

n
a
κ)

a
, (15)

where

fp(x) =
pJp(x)

J ′p(x)x
.

Numerical calculations even confirm for a = 1.01 the existence of at least 24 ITEs,

almost equidistantly distributed, within the interval (0, 2) as the consecutive smallest

positive roots κp of gp for p = 1, . . . , 24:

0.115311585535849, 0.199588421652397, 0.282144281238904, 0.364146487789215,

0.445898824589272, 0.527516720334738, 0.609053860429526, 0.690538657514437,

0.771987575480684, 0.853410820048637, 0.934815057189782, 1.016204826695360,

1.097583327960807, 1.178952881037817, 1.260315209516204, 1.341671620743993,

1.423023124392495, 1.504370512663545, 1.585714415871614, 1.667055341806005,

1.748393704134480, 1.829729843252073, 1.911064041822514, 1.992396536525989.

We now compare these values with each positive root κ̃p of the second order Taylor

approximation g̃p(·, a) of gp(·, a) around zero,

g̃p(κ, a) =
a− 1

a
− n− a2

2a2p(p+ 1)
κ2 . (16)
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Since g̃p(·, a) is strictly decreasing for a2 < n, but g̃p(0, a) < 0 for a < 1, we get a first

idea about why we do not observe ITEs close to zero for a = 0.99. However, for a > 1

the parabola intersects the κ-axis at

κ̃p =

√
2(a2 − a)

n− a2
p(p+ 1) , (17)

and evaluates to 0.116436686356126, 0.201674256633773, 0.285210468912994 and

1.852038873292762, 1.934391514809814, 2.016742566337728 for our marginal test

samples p = 1, 2, 3 and p = 22, 23, 24, respectively. We recognize the almost equidistant

structure of the κp consistent with our approximation formula (17) which gives rise to

believe that this pattern even continues for larger p. Obviously, the modified MFS does

not point to all of these existent eigenvalues with a valley closeby yet. Increasing the

number of collocation points to m = 30, we see in Figure 2 that successively further,

but still not all minima, especially not those which are more distant from zero, appear

within an acceptable number of collocation points. In fact, for larger m the output

starts getting negatively accompanied by effects of ill-conditioning which finally results

in noisy artefacts within the graphs. We conclude that the regime a > 1 with n > 1 (or

equivalently a < 1 with n < 1) seems to be not well suited for eigenvalue approximations

on the basis of the modified MFS as long as the indicating minima of the smallest-

singular-value-function are forced to oscillate strongly. The following lemma shows that

the situation is even worse for a↘ 1, since we have an accumulation of infinitely many

ITEs around zero. Our interpretation of this observation is that the eigenspace of k = 0

for a = 1, which consists of all harmonic functions, emerges from the collection of

eigenstates that are absorbed by the trivial ITE in the right-hand-side limit of a.

Lemma 5. Fix n > 1. Then for any p ∈ N and any upper threshold κ̃ > 0 there exists

ãp > 1 such that for all ãp > a > 1 there exists a positive root kp,a of gp(·, a) from

(15) with κ̃ > kp,a. The same holds true for the sign relations n < 1 and ãp < a < 1

correspondingly.

Proof. We will work with n, a > 1 since the proof for the converse case can be performed

in a similar fashion. One way to prove the lemma is to argue rigorously that (17)

sufficiently approximates the smallest root of gp(·, a) asymptotically for a↘ 1. However,

we will go a slightly different way and make use of the intermediate value theorem to

prove that the continuous function gp(·, a) switches its sign in the interval (0, κ̃) for

every 1 < a < ãp. For this we first note that by (16) we have that

gp(0, a) =
a− 1

a
> 0 (18)

for all a > 1. Next, we want to show that gp(κp, a) < 0 for some 0 < κp < κ̃ and for

every 1 < a < ãp. Since fp(x) = 1 + x2/(2p(p+ 1)) +O(xp+4) for x→ 0, we can always

find an open interval Ip = (0, ip), ip > 0 on which fp is strictly monotonically increasing.
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For now fix some 1 < ñ < n as well as κ̃ > κp > 0 such that κp
√
n < ip. Then we set

ãp := min

{
ñ,
fp(
√

n
ñ
κp)

fp(κp)

}
> 1 .

Hence, for any 1 < a < ãp we get by monotonicity of fp on Ip that

0 > fp(κp)−
fp(
√

n
ñ
κp)

a
> fp(κp)−

fp(
√

n
a
κp)

a
= gp(a, κp) .

Since κp is independent of a, the intermediate value theorem applies in combination

with (18) for all 1 < a < ãp and thereby ensures the existence of roots kp,a > 0.

However, despite the different behavior of the eigenvalues for a ↗ 1 and a ↘ 1

including their retarded numerical appearance for the latter case, it should be noted

that Figures 1 and 2 also indicate that for any approximate ITE k− such that a < 1,

we can already find very early with respect to the number of collocation points an

(a > 1)-complementing ITE k+ with the same limit point when the corresponding a

approaches 1. Our exemplary reference pair from the right corner of the above plots

can even be recovered by the modified MFS up to machine precision and gives the

smallest ITE 2.882728798537896 for a = 0.99 in combination with 2.922641535098038

for a = 1.01, thus surrounding closely the smallest isotropic ITE of the unit disc being

2.902608055212766, see [21]. In particular, the modified MFS is here far more accurate

than the boundary element method from [20] where apparently only 2 digits of their

given ITE approximations are correct.

Since the cases n > 1 and n < 1 seem to be structurally similar, we now concentrate

on n > 1. Although we have not yet compared numerically the borderline case n = 1

for both discussed a-scenarios, we recall the existence of a scaling law here connecting

ITEs for anisotropic reciprocals according to

a∆w + k2w = 0 in D

∆v + k2v = 0 in D

w = v on ∂D

a∂νw = ∂νv on ∂D

⇐⇒

1
a
∆v +

(
k√
a

)2
v = 0 in D

∆w +
(
k√
a

)2
w = 0 in D

v = w on ∂D
1
a
∂νv = ∂νw on ∂D

and which directly links the two separate regimes a > 1 and a < 1. Convinced of all

this, we leave the guarded zone of analytically computable ITEs via Bessel functions now

and provide results for n ≥ 1 but A∗ 6= A∗ in the sequel without having exact reference

values at hand any more. However, we still assume A to be diagonal by its tensor

property which could be balanced otherwise by a rotation of the scatterer according to

div
(
Ã∇w̃

) ∣∣∣
x

= tr
(
Ã∇∇T w̃|x

)
= tr

(
Ã∇∇Tw|QxQ

)
= tr

(
ÃQT∇∇Tw|QxQ

)
= tr

(
Q(ÃQT∇∇Tw|QxQ)QT

)
= tr

(
A∇∇Tw|Qx

)
= div (A∇w) |Qx ,

(19)
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where we utilized the similarity invariance of the trace and the rotation-associated

notation w̃(x) := w(Qx) and Ã = QTAQ for Q ∈ SO(2). Also, we require that

either A∗ < 1 or that A∗ > 1 is sufficiently distant from unity to avoid for the latter

the aforementioned eigenvalue accumulation consequences in practice. Altogether, this

results in four different test cases characterized by the constitutive data (A11, A22, n)

Material class (A11,A22, n)

(A∗ < 1, n = 1)
(

1
8
, 1

2
, 1
)

(A∗ > 1, n = 1) (2,8,1)

(A∗ < 1, n > 1)
(

1
8
, 1

2
, 4
)

(A∗ > 1, n > 1) (2,8,4)

(20)

for which we have sampled the 3-tuple on the right as a class representative to compute

the first four real ITEs for. This will be done in the following for a collection of

star-shaped scatterers D taken from [21] which are categorized in groups of gradual

boundary deformations for better sensitivity control of the corresponding ITE response.

Throughout, as the location of interior points did not influence the modified MFS output

significantly, we distributed 20 of them in total on circles fully contained in the scattering

domain. However, the distribution of the sources, which we restricted in an equiangular

arrangement either to the artificial boundary Γ = ∂D(S) of the same but slightly scaled-

up scatterer by some factor S > 1 (i.e. ∂D(1) = ∂D) or to some outer circle Γ = ∂BR(0)

of radius R with its center at the origin, really impacts the approximation quality of

the eigenvalues. So our numerical experiments determined quite individually for each D

how to choose S or R, respectively. As a rule of thumb, the larger S or R is, the faster

the MFS output converges with respect to m, but simultaneously ill-conditioning effects

start earlier to impede the detection. For instance, scatterers of complex shape require

more representative collocation points and thus Γ should lie closer to D for relatively

optimal performance. With these conventions, m (note mI = 20 is considered as fixed)

in combination with S or R fully describes our modified MFS setup for our 2D scattering

domains to be discussed, whereas the modeling parameter are given by (20).

We start with the unit disc interpreted as an ellipse with equal axes and shrink the

minor axis b step by step to 0.8, 0.5 and 0.3 according to

t 7→ (cos(t), b sin(t)) , 0 ≤ t < 2π . (21)

The results are shown in Figure 3 and were obtained for R = 5b as some averaged and

cut-off ITE output from those m within the range {30, . . . , 70} whose first singular value

were dominantly small. Typical bottom magnitudes were around 10−14±1 and sometimes

even vanished up to machine precision. We observe that the number of recoverable digits

is relatively proportional to the logarithm of σ1, mostly decreases the more the ellipses

deviate from the unit disc and also seems to depend strongly on the material parameters

(A11, A22, n). An explanation for the latter is that the anisotropic parameters enter in

our MFS ansatz as inner variations of the fundamental solutions, see Lemma 1, which,

in terms of a pull-back, resembles spatial evaluations of our radial basis functions along

either more or less elliptic collocation boundaries according to (8). From [21] we even
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b=1.0 b=0.8 b=0.5 b=0.3

b (A11,A22, n) ITE 1 ITE 2 ITE 3 ITE 4

1.0

(1/8, 1/2, 1) 2.432342816525 2.630469896016 3.59558793161 3.67772382000

(2, 8, 1) 5.422742998449 6.104903895458 6.701155193070 6.807186612188

(1/8, 1/2, 4) 1.102569011198 1.54251886201 1.59628152267 1.60949290139

(2, 8, 4) 1.0943753002121 2.6607655055967 3.2850748911309 4.741801624682

0.8

(1/8, 1/2, 1) 2.8165335886620 2.9285919681719 4.07689045702 4.29727034976

(2, 8, 1) 6.533520997906 7.416596066665 7.518127550666 7.698364095496

(1/8, 1/2, 4) 1.2746345105108 1.2937710253833 1.708033787158 1.764558638514

(2, 8, 4) 1.0949963906964 3.295035558059 3.883765024644 4.66548759617

0.5

(1/8, 1/2, 1) 4.04671357026 4.0805282756 5.2097578799 5.2372873746

(2, 8, 1) 10.014688061884 10.43413680087 10.67428849705 11.00440368778

(1/8, 1/2, 4) 1.86432077115 1.86788372558 2.2749471210 2.2899879956

(2, 8, 4) 1.094252956180 2.153141477577 3.263881703236 3.587938159800

0.3

(1/8, 1/2, 1) 6.3010969 6.3020803 7.352124 7.361319

(2, 8, 1) 16.1836653485 16.2620312417 16.317697464 16.50554137

(1/8, 1/2, 4) 2.94403372897 2.94412360374 3.338511006 3.338761987

(2, 8, 4) 1.092202884187 2.070214109320 3.091592773591 4.147922758215

Figure 3. First four approximate real-valued ITEs without counting multiplicity for

ellipses with major semi-axis of length 1 and varied minor semi axis b based on the

modified MFS.

know that the best results were achieved for the disc among all scattering ellipses under

consideration and so it is actually not surprising that A11 = A22 still yields superior

accuracy.

Next, we focus on the transition from an ellipse to a kite shape whose

parametrization

t 7→ (0.75 cos(t) + d cos(2t), sin(t)) , 0 ≤ t < 2π

is originally taken from [11]. Here, d is the characterizing deformation parameter which

we will increase successively from 0 to 0.3 by steps of size 0.1. Figure 4 displays our MFS

results for this case and shows in comparison with Figure 3 that due to the more complex

scattering shapes we have now lost accuracy altogether. In particular, the larger the

perturbation d is, the smaller the extracted approximation mantissa is. This regression

was also indicated by the magnitudes of σ1 during the computational procedure which

were roughly bounded from below by 10−15+20d each. It became necessary to choose a

tighter scaling factor for Γ that turned out to be numerically quite optimal for S = 2−d.

Likewise, the number of collocation points required for some stable MFS output was

slightly larger than for the ellipses and ranged from about 35 to 75. As an intermediate

conclusion, the modified MFS seems very powerful for rather easy profiles of D and

begins to stagnate gradually as one deviates from the isotropic case or from the disc as

scatterer.

In order to see how the method responds to shapes with corners and in particular to

Lipschitz domains, we examine the unit square D = [−0.5, 0.5]2. It is clear at first sight
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d=0.0 d=0.1 d=0.2 d=0.3

d (A11,A22, n) ITE 1 ITE 2 ITE 3 ITE 4

0.0

(1/8, 1/2, 1) 2.8471025260348 3.1600761111251 3.8992194907200 4.0633832879825

(2, 8, 1) 5.813165368996797 6.483618475707658 7.70907468441514 8.0359270276980

(1/8, 1/2, 4) 1.25548301224033 1.25437465935063 1.69500812538264 1.75549467161328

(2, 8, 4) 1.45615282653635 2.7053687255745 3.5755403402386 5.3469141120703

0.1

(1/8, 1/2, 1) 2.844832741265 3.175258583036 3.894779056630 4.09507454531

(2, 8, 1) 5.849387560813 6.477010844996 7.728576868915 7.99190658583

(1/8, 1/2, 4) 1.234632318588 1.257786433541 1.699972423624 1.762508594273

(2, 8, 4) 1.438716788003 2.694965222759 3.55348405570 5.395815566

0.2

(1/8, 1/2, 1) 2.868977355 3.19024736 3.929439900 4.14548893

(2, 8, 1) 5.96482555 6.48350477 7.805845131 7.91285541

(1/8, 1/2, 4) 1.255163101 1.273766679 1.714003852 1.788830942

(2, 8, 4) 1.392899663 2.643884081 3.493341629 5.62747817

0.3

(1/8, 1/2, 1) 2.93627 3.2048 4.03421 4.1863

(2, 8, 1) 6.1597 6.5494 7.8795 7.9617

(1/8, 1/2, 4) 1.27293 1.31188 1.73880 1.83879

(2, 8, 4) 1.32210 2.49773 3.42292 4.28398

Figure 4. First four approximate real-valued ITEs without counting multiplicity for

the shape transition ellipse-kite with deformation parameter d based on the modified

MFS.

(A11,A22, n) ITE 1 ITE 2 ITE 3 ITE 4

(1/8, 1/2, 1) 4.386 4.845 6.615 6.646

(2, 8, 1) 10.036 11.14 11.60 12.32

(1/8, 1/2, 4) 1.998 2.021 2.798 2.853

(2, 8, 4) 1.85 4.92 5.14 6.11

Figure 5. First four approximate real-valued ITEs without counting multiplicity

based on the modified MFS for the unit square.

in Figure 5 that the modified MFS lacks accuracy here despite the high symmetry of the

scatterer. We recall from the isotropic case, considered as the optimal MFS scenario,

that there is the deep result from [4] which states that solution pairs (v, w) of the ITP

cannot be extended locally around right angle corners. In this spirit, we get an idea

about why we were forced to take S = 1.2 which is very close to D itself to find reliable

ITE results. However, we are still able to improve the unit square results from [9] for

the smallest ITE induced by the material parameters (A11, A22, n) = (1/8, 1/2, 1) which

was predicted as 4.1 there and updated now as 4.386. In our calculation process, m

often needed to exceed 100 collocation points until minimal dips for σ1 in the graph

became effectively apparent. We conclude that, especially for non-smooth scattering

boundaries, the MFS rather serves as a rough ITE localizer than as an accuracy gainer.

We complete this numerical section by pointing out that the modified MFS has still

more ITE features to offer. For example, the method is optionally capable of recovering

the multiplicity of each approximate eigenvalue by repeating the whole algorithm with
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the first singular value in (6) replaced by higher ones: if, in the notation from Theorem

2, km → k, σ1(km) vanishes for m→∞ asymptotically like σ2(km), . . . , σi(km) for some

fixed 2 ≤ i ∈ N, then we have a first indication that the multiplicity of k as an ITE

might also be i. Such an adoption for the limit certainly requires additional justification

and advanced assumptions on the eigenfunctions. However, unlike other eigenvalue

algorithms, for each m our method manages to separate the clustering of closely nearby

and possibly simple eigenvalues from identical ones having a corresponding multiplicity.

Also, there is the possibility of recovering the approximate ITE eigenfunctions for every

km in terms of σ1(km) = · · · = σi(km) and their corresponding singular vectors. Again

one needs to adapt our current solution algorithm slightly and invoke the so called

generalized SVD instead of (6) to circumvent severe ill-conditioning problems, see [1].

For more insights or further details of the MFS in the ITE context, we refer to [21].

4.2. Conclusion

The modified MFS is an easy but powerful tool for anisotropic ITE recovery dealing

with relatively easy shapes such that a moderate number of collocation points is

sufficient to represent the scatterer’s boundary. To obtain optimal results in terms of the

approximation quality, a key step is finding a proper exterior artificial boundary unique

to the scatterer itself whose (non-linear) optimization we did not focus on yet. Instead,

our experiments with star-shaped domains has proven to be very competitive with a

copy of the positively scaled-up scattering boundary or with a simple surrounding circle

for the source points. Working with more exotic domains or with Lipschitz domains, the

method lacks higher accuracy, but is still capable of detecting the rough locality of ITEs.

For the first time, the two ordered regimes of (A − I) around the isotropic case were

investigated with a focus on the corresponding distribution of the ITEs. Our numerical

results show that they behave significantly differently which limits the applicability

of our method close to certain borderline cases of A. It would be interesting to know

whether finite element methods are also affected by this problem. In our future research,

we try to tackle a convergence analysis for the modified MFS in the ITP context to have

a more rigorous measure at hand for the method’s efficiency.
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