000851323 001__ 851323
000851323 005__ 20210129234841.0
000851323 0247_ $$2doi$$a10.1021/acs.langmuir.8b02003
000851323 0247_ $$2ISSN$$a0743-7463
000851323 0247_ $$2ISSN$$a1520-5827
000851323 0247_ $$2pmid$$apmid:30110535
000851323 0247_ $$2WOS$$aWOS:000471728600013
000851323 0247_ $$2Handle$$a2128/22877
000851323 037__ $$aFZJ-2018-05009
000851323 082__ $$a670
000851323 1001_ $$0P:(DE-Juel1)169770$$aAbraham, Jella-Andrea$$b0$$ufzj
000851323 245__ $$aDirecting neuronal outgrowth and network formation of rat cortical neurons by cyclic substrate stretch
000851323 260__ $$aWashington, DC$$bACS Publ.$$c2019
000851323 3367_ $$2DRIVER$$aarticle
000851323 3367_ $$2DataCite$$aOutput Types/Journal article
000851323 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1560497243_25562
000851323 3367_ $$2BibTeX$$aARTICLE
000851323 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851323 3367_ $$00$$2EndNote$$aJournal Article
000851323 520__ $$aNeuronal mechanobiology plays a vital function in brain development and homeostasis with an essential role in neuronal maturation, pathfinding, and differentiation but is also crucial for understanding brain pathology. In this study, we constructed an in vitro system to assess neuronal responses to cyclic strain as a mechanical signal. The selected strain amplitudes mimicked physiological as well as pathological conditions. By subjecting embryonic neuronal cells to cyclic uniaxial strain we could steer the direction of neuronal outgrowth perpendicular to strain direction for all applied amplitudes. A long-term analysis proved maintained growth direction. Moreover, stretched neurons showed an enhanced length, growth, and formation of nascent side branches with most elevated growth rates subsequent to physiological straining. Application of cyclic strain to already formed neurites identified retraction bulbs with destabilized microtubule structures as spontaneous responses. Importantly, neurons were able to adapt to the mechanical signals without induction of cell death and showed a triggered growth behavior when compared to unstretched neurons. The data suggest that cyclic strain plays a critical role in neuronal development.
000851323 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000851323 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x1
000851323 588__ $$aDataset connected to CrossRef
000851323 7001_ $$0P:(DE-Juel1)145159$$aLinnartz, Christina$$b1$$ufzj
000851323 7001_ $$0P:(DE-Juel1)129308$$aDreissen, Georg$$b2$$ufzj
000851323 7001_ $$0P:(DE-Juel1)144199$$aSpringer, Ronald$$b3$$ufzj
000851323 7001_ $$0P:(DE-HGF)0$$aBlaschke, Stefan$$b4
000851323 7001_ $$0P:(DE-HGF)0$$aRueger, Maria A.$$b5
000851323 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b6$$ufzj
000851323 7001_ $$0P:(DE-Juel1)128817$$aHoffmann, Bernd$$b7$$eCorresponding author$$ufzj
000851323 7001_ $$0P:(DE-Juel1)128833$$aMerkel, Rudolf$$b8$$ufzj
000851323 773__ $$0PERI:(DE-600)2005937-1$$a10.1021/acs.langmuir.8b02003$$gp. acs.langmuir.8b02003$$n23$$p7423-7431$$tLangmuir$$v35$$x1520-5827$$y2019
000851323 8564_ $$uhttps://juser.fz-juelich.de/record/851323/files/Abraham_2018%20Revision%20unmarked.pdf$$yOpenAccess
000851323 8564_ $$uhttps://juser.fz-juelich.de/record/851323/files/acs.langmuir.8b02003.pdf$$yRestricted
000851323 8564_ $$uhttps://juser.fz-juelich.de/record/851323/files/Abraham_2018%20Revision%20unmarked.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000851323 8564_ $$uhttps://juser.fz-juelich.de/record/851323/files/acs.langmuir.8b02003.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851323 909CO $$ooai:juser.fz-juelich.de:851323$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000851323 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169770$$aForschungszentrum Jülich$$b0$$kFZJ
000851323 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145159$$aForschungszentrum Jülich$$b1$$kFZJ
000851323 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129308$$aForschungszentrum Jülich$$b2$$kFZJ
000851323 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144199$$aForschungszentrum Jülich$$b3$$kFZJ
000851323 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b4$$kFZJ
000851323 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aINM-3$$b4
000851323 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b5$$kFZJ
000851323 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aINM-3$$b5
000851323 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b6$$kFZJ
000851323 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128817$$aForschungszentrum Jülich$$b7$$kFZJ
000851323 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich$$b8$$kFZJ
000851323 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000851323 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x1
000851323 9141_ $$y2019
000851323 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851323 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851323 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLANGMUIR : 2015
000851323 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851323 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851323 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851323 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851323 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000851323 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851323 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851323 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000851323 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851323 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000851323 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851323 920__ $$lyes
000851323 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000851323 9201_ $$0I:(DE-Juel1)ICS-7-20110106$$kICS-7$$lBiomechanik$$x1
000851323 9801_ $$aFullTexts
000851323 980__ $$ajournal
000851323 980__ $$aVDB
000851323 980__ $$aUNRESTRICTED
000851323 980__ $$aI:(DE-Juel1)INM-3-20090406
000851323 980__ $$aI:(DE-Juel1)ICS-7-20110106
000851323 981__ $$aI:(DE-Juel1)IBI-2-20200312