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Abstract

To understand the spatial organization as well as long- and short-range con-

nections of the human brain at microscopic resolution, 3D reconstruction of

histological sections is important. We approach this challenge by reconstruct-

ing series of unstained histological sections of multi-scale (1.3 µm and 64 µm)

and multi-modal 3D polarized light imaging (3D-PLI) data. Since spatial coher-

ence is lost during the sectioning procedure, image registration is the major step

in 3D reconstruction. We propose a non-rigid registration method which com-

prises of a novel multi-modal similarity metric and an improved regularization

scheme to cope with deformations inevitably introduced during the sectioning

procedure, as well as a rigid registration approach using a robust similarity met-

ric for improved initial alignment. We also introduce a multi-scale feature-based

localization and registration approach for mapping of 1.3 µm sections to 64 µm

sections as well as a scale-adaptive method that can handle challenging sections

with large semi-global deformations due to tissue splits. We have applied our

registration method to 126 consecutive sections of the temporal lobe of the hu-

man brain with 64 µm and 1.3 µm resolution. Each step of the registration
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method was quantitatively evaluated using 10 different sections and manually

determined ground truth, and a quantitative comparison with previous methods

was performed. Visual assessment of the reconstructed volumes and comparison

with reference volumes confirmed the high quality of the registration result.

Keywords: Image registration, 3D reconstruction, canonical correlation

transform, polarized light imaging, human brain, hippocampus

1. Introduction

Decoding the connectome of the normal and pathologic human brain is one of

the major goals of neuroscientists around the world. If seeking to understand

the (dys-)function of the human brain, it is indispensable to study its underlying

structure, i.e. the organization of neurons and their intricate connections. The5

mapping of the nerve fiber architecture of the human brain is a multiscale chal-

lenge as the size of the structures range from a few micrometers for the diameter

of axons to several centimeters for long range inter-hemispheric connections.

3D polarized light imaging (3D-PLI) is a neuroimaging technique that of-

fers the possibility to investigate fibers and their pathways covering the range10

between micro- and mesoscale, depending on the employed optical setup [1, 2].

This technique relies on transmission measurements of polarized light through

thin, unstained histological brain sections in a polarimetric setup. Polarized

light is an ideal probe to reveal birefringent structures in a sample. In case of

brain tissue, essentially the myelinated neuronal projections referred to as nerve15

fibers induce birefringent properties and can therefore be discriminated from

non-birefringent tissue components by polarimetry. Reckfort et al. [3] intro-

duced a concept of combining different spatial scales by 3D-PLI measurements

and pointed out the benefit of using complementary polarimeters with different

optical resolutions and sensitivities. This study was based on individual 2D20

brain sections and not on 3D volume reconstructions. To close the spatial gap

between highly resolved microscopical techniques (e.g., two-photon microscopy

[4]) and the macroscopic range covered by diffusion Magnetic Resonance Imag-
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ing (dMRI, [5]), high-accuracy 3D volume reconstruction from serial 3D-PLI

section images is indispensable.25

Previous work on the 3D reconstruction of histological brain data based

on optical imaging (e.g., [6, 7, 8, 9, 10, 11, 12, 13, 14]) typically follows a

common approach, where individual sections are aligned with a 3D reference

MRI [11, 14], blockface data [7, 13], or both types of data [8, 9, 10, 6]). Dif-

ferent types of registration approaches such as diffeomorphic registration based30

on demons [15] (e.g., [11, 14]), free-form deformations using B-splines [16] (e.g.,

[8, 13]), and local rigid/affine grid schemes (e.g., [10]) have been employed.

Mutual information [6, 8, 11] and cross-correlation [14] were used as multi-

modal similarity measures. In addition, surface-based elastic registration using

a wavelet-based multi-resolution expansion [17], block-matching [18], and poly-35

rigid and polyaffine transformation models [19] have been used for registration of

histological sections. Most of these methods were either applied to non-human

brain data such as rat brain (e.g., [8, 18, 17, 14]) or drosophilla brain [12], which

are smaller and less complex than the human brain, or use only rigid or affine

registration (e.g. [18, 19]), which is generally not sufficient to cope with deforma-40

tions in histological sections as mentioned in [8]. All methods mentioned above

did not consider 3D-PLI data, which relies on unstained sections, has special

characteristics, and is very different from traditional histological data or MRI

data.

Regarding the registration of 3D-PLI data, only few work can be found [7,45

13]. In [7], a fluid model in conjunction with mutual information was used for

registration, and a different human brain was considered compared to our work.

In [13], 3D-PLI data of a rat brain was used. The applied non-rigid registration

method is based on B-splines and uses the sum of square intensity differences as

similarity measure. Compared to [7, 13] we use a more realistic elastic deforma-50

tion model of tissues for non-rigid registration to cope with deformations due

to the histological sectioning procedure. We also use a different similarity mea-

sure. In addition, our study is based on high-resolution (64µm) and ultra-high

resolution (1.3µm) 3D-PLI data, whereas in [7] a coarser isotropic resolution of
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100µm was used and a smaller number of brain sections has been processed.55

In the present study, we performed a 3D reconstruction of a coronal slab

through a human temporal lobe, which includes parts of the hippocampus. The

hippocampus is of specific interest in brain research, since it plays an impor-

tant role for the declarative memory (e.g., [11]). Individual fiber tracts and

pathways in individual sections have been analyzed in detail in a recent study60

by Zeineh et al. [20], while the majority of studies in the past were limited to

ex vivo MRI [21, 22, 5]. In [6, 11], histological sections stained for cell bodies

were registered to postmortem MRI scans, and affine as well as diffeomorphic

registration utilizing normalized mutual information were applied. In [6], the

3D reconstructed histological sections were used to create probabilistic cytoar-65

chitectonic maps of the hippocampus region and its subregions. Postmorten

T1-weighted MRI data with an isotropic resolution of 1mm3 and acquired at

1.5 T was registered to the blockface images using an affine transformation.

In [11], an isotropic resolution of 200 µm was used to reconstruct the human

hippocampal regions from stained histology images and ex vivo MRI data. In70

contrast, in our work we use 3D-PLI data of the hippocampus with a much

higher resolution and consider unstained histological sections.

In the present study, we introduce an intensity-based non-rigid registration

method based on a physical deformation model that can handle both small and

large deformations present in multi-scale and multi-modal 3D-PLI images. We75

also propose a complete pipeline for 3D reconstruction of spatially misaligned

3D-PLI data at both meso- and micro-scales. This work extends our previous

conference paper [23], where non-rigid registration was used to cope with brain

tissue deformations in high-resolution 3D-PLI images. However, there ultra-

high resolution images were not considered and only 60 sections were utilized80

for 3D reconstruction. In addition, a different registration method was used

(e.g., different similarity measure and regularization). To our knowledge, this is

the first time that a 3D reconstruction is performed using a large stack of un-

stained histological sections of the human temporal lobe and the hippocampus

region based on 3D-PLI data at both high-resolution and ultra-high resolution.85
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Our main contributions include: 1) introduction of a similarity metric for spline-

based non-rigid registration using the canonical correlation transform, 2) rigid

registration of multi-modal data based on the correlation transform, 3) regu-

larization of the deformation vector field using a separable filter, 4) structure

preserving diffusion to reduce outliers of deformation field updates in the multi-90

resolution energy minimization scheme, 5) scale-adaptive non-rigid registration

method to tackle large semi-global deformations due to tissue splits, 6) feature-

based localization and registration using a feature strength measure, and 7) a

complete pipeline for 3D reconstruction of both high-resolution (64µm) and

ultra-high resolution (1.3µm) 3D-PLI data.95

This paper is organized as follows: In Section 2 we briefly describe the tis-

sue preparation and 3D-PLI image acquisition. Section 3 presents our proposed

non-rigid registration method and introduces the multi-modal similarity metric

as well as different regularization schemes. In Section 4, we describe an exten-

sion of our non-rigid registration method to cope with large deformations due to100

tissue splits in the 3D-PLI data. Section 5 presents a feature-based localization

approach for identifying ultra-high resolution image regions within the corre-

sponding registered high-resolution images. Section 6 describes our complete

pipeline for 3D reconstruction of multi-modal and multi-scale 3D-PLI data. In

Section 7, we present a quantitative evaluation of our method and a comparison105

with existing methods. In Section 8, we discuss the main findings of our work.

Finally, in Section 9 conclusions are provided.

2. 3D polarized light imaging

2.1. Preparation of human brain tissue

The process of mapping the axonal architecture in human brain sections has110

been described in detail in [1, 2]. In this study, the human brain of a 64-year-

old male was obtained through the body donor program of the University of

Rostock, Germany, in accordance with the local ethics committee. The brain

was removed from the skull, and fixed in 4% formalin. A slab of the temporal
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Figure 1: Temporal lobe of a human brain: Image of the temporal lobe with ARTag during

sectioning (left), blockface (masked) image of a mid-section (middle), and 3D reconstructed

blockface volume after rigid registration.

lobe of the left hemisphere was separated, cryo-protected with 20% glycerin, and115

frozen. The tissue was sectioned coronally at 70 µm thickness using a large-

scale cryostat microtome (Polycut CM 3500, Leica, Germany). Each histological

section was mounted on a glass slide with 20% glycerin and cover-slipped. No

staining was applied. Blockface images were acquired before each sectioning step

using a CCD camera mounted vertically above the frozen brain block to obtain120

undistorted reference images (see Fig. 1). These blockface images were seri-

ally aligned by rigid registration of the fiducial marker system ARTag mounted

underneath the frozen block of tissue [24, 25].

2.2. Image acquisition

Each histological brain section was subjected to two complementary polarimetric125

setups [2]:

i. a large-area polarimeter with tilting stage for acquiring images at meso-

scale resolution (pixel size: 64 µm× 64 µm) covering the entire temporal

lobe (see Fig. 2 (top)), and

ii. a polarizing microscope for acquiring much more detailed image informa-130

tion at micro-scale resolution (pixel size: 1.3 µm × 1.3 µm) covering a

specific region of interest, the hippocampus (see Fig. 2 (bottom)).

In the following, images acquired under condition (i) will be referred to as

HR (high-resolution), while images obtained according to (ii) will be referred

to as uHR (ultra-high-resolution). Both HR and uHR images are used in our135
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Transmittance Retardation Direction Inclination

Figure 2: Different 3D-PLI modalities of the section in Fig.1 (middle). 64µ m high-resolution

(HR) image (top) and 1.3µm ultra-high resolution (uHR) images (bottom) are shown. The

uHR images correspond to the marked ROI (red rectangle, top left) of the HR images.

3D reconstruction pipeline. Details on the polarized light imaging technique

employed in our work can be found in the Supplementary material. We have

applied our registration method to 126 consecutive sections of 3D-PLI data of

the temporal lobe of the human brain. The image size for the HR images is

about 2776×2080 pixels and that for the uHR images is about 22000×15000140

pixels. In z -direction, the 3D reconstructed volume comprises 0.88 cm of the

temporal lobe of the human brain.

3. Intensity-based non-rigid registration

To cope with local deformations during the sectioning and mounting processes

in the 3D-PLI data of the human brain sections, we propose an intensity-based145

non-rigid registration method based on a physical deformation model. 3D-PLI

images of each section are registered to their corresponding blockface images.

Let u be the displacement vector field (or deformation field) within the

image domain Ω, u = (u1, u2) : Ω→ R2, which we aim to compute between the
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target image g1 and the source image g2. Then, the proposed intensity-based150

registration method can be formulated by an energy minimization scheme

E
(
u,uI

)
= φdata

(
g1, g2,u

I
)

+ λIψI
(
u,uI

)
+ λE ψelastic(u)︸ ︷︷ ︸

φreg(u)

, (1)

where uI : Ω → R2 is a second deformation field which is computed using in-

tensity information only. The first term φdata in Eq. (1) represents an intensity

similarity measure between the deformed source and the target image. The sec-

ond term ψI couples the intensity-based deformation field uI with the overall155

deformation field u and acts as a regularizer of the two deformation fields. Fi-

nally, the third term ψelastic represents the regularization of the deformation

field u based on the elastic energy according to the Navier equation of linear

elasticity [26]. The weighting factors λI , λE > 0 control the trade-off between

the data term φdata and the two regularization terms φreg(u). Below, we de-160

scribe each component of E
(
u,uI

)
as well as the minimization strategies used

to compute the deformation fields.

Our non-rigid registration method comprises a novel similarity measure for

the data term φdata which is based on the correlation transform and exploits

similarity information of the local neighborhood to increase the robustness and165

accuracy. In addition, to further improve the robustness and cope with out-

liers in the deformation field, our method includes two regularization terms: 1)

ψelastic which is based on the Navier equation of linear elasticity allowing real-

istic deformations of tissues, and 2) ψI which penalizes high variations between

the computed intensity-based deformation field uI and the overall deformation170

field u. In addition, we propose a novel type of weighting for ψI using a sep-

arable filter (see below). Our method is based on an analytic solution using

matrix-valued Gaussian elastic body splines (GEBS, [27]). Additionally, we use

a coarse-to-fine multiresolution scheme and structure preserving diffusion filter-

ing [28] during upsampling to suppress outliers and to preserve discontinuities175

in the deformation fields at image boundaries.
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3.1. Data term based on the canonical correlation transform

For the data term φdata in Eq. (1) we introduce a canonical local correlation

transform. The correlation transform is based on z -normalized pixel intensities

g̃ (x) within a square patch Px centered at x and defined by

g̃ (x) =
g (x)− µg

σg
, (2)

where g (x) are the original image intensities, and µg and σg are the mean

intensity and the standard deviation computed within Px, respectively. In our

previous work, we used the correlation transform of a pixel (CoT, [23]) as the

data term and found that this yields better results than mutual information

(MI, [29]). However, a main limitation of this approach is that it does not fully

exploit the intensity characteristics within a patch since only the center pixel

is taken into account. Considering the full CoT (i.e., all z -normalized pixels

within a patch), the normalized cross-correlation (NCC) was formulated as a

sum-of-squared differences [30], for a given pixel x in a square patch Px of the

target and the source images g1 and g2, respectively, as

1−NCC (g1(x), g2(x + u)) =
1

2N

∑
xj∈Px

(g̃1(xj)− g̃2(xj + u))
2

(3)

where N is the total number of pixels in each patch, and u is the deformation

vector field. Minimizing Eq. (3) corresponds to maximizing NCC. A limitation

of the full CoT is that the gradient needs to be computed for all N pixels which

significantly increases the computation time (e.g., for a 7 × 7 patch as in our

case, the gradient needs to computed at 49 pixels). In this contribution, we pro-

pose exploiting the full information from the local neighborhood by considering

the full CoT of a patch Px while reducing the computation time significantly.

For this, we introduce the canonical CoT (CnCoT, g̀(x)), which combines the

z -normalized pixels of a patch Px by representing them as a matrix P and

computing the ratio of the trace and the largest eigenvalue λmax of P. For com-

puting λmax, we used the Schur decomposition. Further, we use the absolute

value of CoT to make the transform more independent of contrast differences.
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Also, we clip the standard deviation σg using a threshold Tσ to avoid division

by zero or small values in homogeneous regions. For computing P, we use the

transformation

ğ (xj) =
| g (xj)− µg |

clip (σg, [Tσ,∞])
, ∀j ∈ Px, (4)

where clip(·) is a function which replaces values below the threshold Tσ (we used

Tσ = 0.1 · σ). Then, our canonical correlation transform (CnCoT) is defined by

g̀(x) =
1

n

tr P

λmax + ε
, (5)

where n is the number of diagonal elements of P, and ε = 0.001 is used to

prevent division by zero. Thus, the data term can be written as

φdata
(
g1, g2,u

I
)

=
∑
x∈Ω

(
g̀1(x)− g̀2

(
x + uI

))2
. (6)

3.2. Regularization of the deformation field

In our non-rigid registration method the regularization of the deformation field

is represented by φReg(u) = λIψI
(
u,uI

)
+ λEψelastic(u) (see Eq. (1)). We use180

the following types of regularizations:

1. The term ψelastic represents an elastic regularizer based on the force-free

Navier equation of linear elasticity [31]

λEψelastic(u) = λE

∫
x∈Ω

µ

4

2∑
j,k=1

(∂xjuk + ∂xk
uj)

2 +
λ

2
(div u)2dx (7)

which quantifies the strain of an object undergoing deformations. ψelastic

is the regularizer corresponding to the analytic solution for the overall

deformation field u given in Eq. (14) below.

2. The term ψI represents a weighted quadratic regularization (l2-norm). This

term couples the intensity-based deformation field uI with the overall

deformation field u. In previous work [26], a Gaussian function was used

for weighting. Here, we suggest using a different weighting fσ,α(x) based

on a separable filter [32] with normalization constant 1−α. An advantage

10



of this type of weighting is that it constrains the deviations between uI

and u leading to smooth deformations.

λIψI
(
u,uI

)
= λI

∫
dx

∫
dξ fσ,α(‖ x− ξ ‖) ‖uI(ξ)− u(x)‖2, (8)

where fσ,α(x) = det(h(x)), h(x) = e‖x‖2
√

2πσ2(1−α)

1− αy2/σ2 αxy/σ2

αxy/σ2 1− αx2/σ2

185

and α ∈ [0, 0.5]. The separable filter h(x) becomes a classical Gaussian

filter for α = 0. Experimentally we found that the normalized separable

filter improves the results (see below).

3. In addition to the regularization described above, we use a coarse-to-fine

multi-resolution scheme as well as structure preserving diffusion filtering

[28] for the deformation field during upscaling. The computed deformation

vector field uj at pyramid level j is used as initialization at the upper level

j − 1. However, extrapolating uj generally amplifies outliers resulting in

poor initialization for the next higher level. Therefore, we use a structure

preserving filter Dt during each update of the multi-resolution scheme:

g̀1(x) = g̀2(x + uj(x))

uj−1(x) = Dt ∗
uj(x)

γ
,

(9)

where Dt =|∇u| ∇ · η(|∇u|) ∇u
|∇u| with conductance η (we used η = 0.02),

Dt ≥ 0, and γ is the upscaling factor.190

3.3. Minimization strategy

Our objective is to obtain smooth and realistic deformation fields. The intensity-

based deformation field uI in Eq. (1) is computed by minimizing the energy

functional E
(
u,uI

)
w.r.t. the first two terms, i.e. the data term φdata and the

weighted quadratic regularization term ψI . The overall deformation field u is195

determined using the last two terms of E
(
u,uI

)
, i.e. the weighted quadratic

regularization term ψI and the elastic regularizer ψelastic. In this case, we exploit

an analytic solution given by Gaussian elastic body splines (GEBS, [27]). Below,
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we detail the GEBS approach and the used optimization strategy to minimize

E
(
u,uI

)
.200

3.3.1. Gaussian elastic body splines

GEBS are based on the Navier equation of linear elasticity [31]

µ∆u + (λ+ µ)∇ (div u) + f = 0 (10)

with the deformation field u, the body forces f , and the Lamé constants µ, λ.

Assuming Gaussian forces fσ = cfσ = c 1
(
√

2πσ)3
exp(−r

2

2σ2 ) with standard devi-

ation σ, r =
√
x2 + y2 + z2, and c = {c1, c2, c3} representing coefficients that

define the strength and direction of the Gaussian forces (we used ck = 1),

then an analytic solution of Eq. (10) (up to a scaling factor) can be derived as

matrix-valued basis function of Gaussian elastic body splines (GEBS) [27]

Gσ(x) =

[
(3− 4ν +

1

2r̂2
)
erf(σ)

r
− 1

r̂
√
π

e−r̂
2

r

]
I+[

erf(σ)

r̂22r3
(2r̂2 − 3) +

3

r̂
√
πr3

e−r̂
2

]
xxT

(11)

where ν = λ
2(λ+µ) , ν > 0 is the Poisson ratio, r̂ = r√

2σ
, I is a 3 × 3 identity

matrix, and erf(x) := 2√
π

∫ x
0
e−t

2

dt is the error function.

3.3.2. Energy minimization

The minimization of the energy functional E
(
u,uI

)
in Eq. (1) is performed

in two parts. First, E is minimized w.r.t. uI , that is, the data term φdata in

Eq. (6) and the quadratic regularization term ψI in Eq. (8) are only used. The

minimum is achieved when ∂E
∂uI = 0, i.e.

∂E

∂uI
= −2

{∑
x∈Ω

[
g̀1(x)− g̀2

(
x + uI(x)

)]
∇I g̀2

(
x + uI(x)

)
+λI

[
uI(x)− u(x)

] }
= 0.

(12)

In Eq. (12), the separable filter fσ,α from Eq. (8) is not considered to simplify

the equation, i.e. we assume σ → 0, α = 0, but fσ,α is considered in the second

part of the optimization (see below). Eq. (12) can be solved efficiently using
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Levenberg-Marquardt optimization [33] (see [34] for implementation details).

The gradients of the source image∇g̀2

(
x + uI(x)

)
are computed using Gaussian

derivative filters. Second, E
(
u,uI

)
is minimized w.r.t. u yielding a smooth and

physically-based final deformation field u. The minimum is achieved for ∂E
∂u = 0

which yields (see Appendix A.1–A.3 for more details)

∂E

∂u
= µ∆u + (λ+ µ)∇ (div u) + εI

∫
fσ,α(x− ξ)(uI(ξ)− u(x)) dξ = 0, (13)

where εI = 2 λI

λE
. Eq. (13) can be solved analytically by using the Fourier trans-

form. An explicit solution has been derived using matrix-vector convolution for

the final deformation field u in [26] as

u(x) = x +
[
φI ∗

(
uI(x)− x

)]
, (14)

where φI = Gσ(x) ∗ΩI(x) with ΩI(x) defined in the Fourier domain as

Ω̂I(ω) = εI · f̂σ,α(ω)θ̂(ω)−1, (15)

where “ ·̂ ” represents the Fourier transform and “θ̂(ω)−1” is the inverse matrix

of the matrix-valued function θ̂. In the spatial domain, θ̂ is given by

θ(x) = fσ,α(x)I + εI ·Gσ(x), (16)

where I is a 3× 3 identity matrix, and Gσ(x) is the basis function of Gaussian205

elastic body splines (GEBS) given in Eq. (11). The energy functional in Eq. (1)

is alternatingly minimized w.r.t. uI and w.r.t. u. This process is continued un-

til convergence of the final deformation field u is achieved. A multiresolution

approach is used to cope with larger deformations and to improve the compu-

tational efficiency (see also Section 3.2 above).210

3.4. Performance of the registration method

We have investigated the performance of the proposed spline-based non-rigid

registration method using the canonical correlation transform (GEBS-CnCoT)

for multi-modal synthetic data, and compared our method with previous non-

rigid registration methods based on mutual information (MI, [35]), cross-corr-215

elation using z -normalized images (ANTS-CC, [36, 37]), and the correlation
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(a) g1 (b) g2 (c) Overlay

(d) ANTS-CC (z -normalized) (e) GEBS-CoT (f) GEBS-CnCoT

Figure 3: Non-rigid registration using different methods for real 3D-PLI data. First row: (a,

b, c) Target blockface image, source transmittance image, and edge overlay. Second row: Non-

rigid registration using results different methods. Third row: Corresponding results (enlarged

regions) for the region indicated by the blue rectangle in (c).

transform using z -normalized images (GEBS-CoT, [23]). It turned out that the

proposed GEBS-CnCoT yields the best result (see Supplementary material).

To illustrate the performance of GEBS-CnCoT for real multi-modal data we

use a blockface image (target image, g1, see Fig. 3 (a)) and a 3D-PLI image220

(source image, g2, see Fig. 3 (b)). In the edge overlay image in Fig. 3 (c), it
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can be observed that large deformations are present at the top of the image

(indicated by the blue rectangle). ANTS-CC [37] using z -normalized images

can only cope with small deformations but not with large deformations (see

second and third row of Fig. 3 (d)). The correlation transform-based method225

(GEBS-CoT) [23] tackles both small and large deformations in some regions but

fails in other regions (marked by cyan arrows). Also, unrealistic deformations

occur as indicated by the blue arrows in Fig. 3 (e). The proposed method

(GEBS-CnCoT), however, is able to tackle both small and large deformations

and yields realistic deformations and the best alignment (see Fig. 3 (f)).230

4. Scale-adaptive non-rigid registration for large semi-global defor-

mations

During the cutting and mounting process of large-scale sections of the human

brain, distortions and other artifacts such as tissue splits or foldings may be

introduced. In Section 3.4 above, we demonstrated that our proposed method235

(GEBS-CnCoT) can cope with small and large deformations in multi-modal

data. However, in case of tissue splits, very large semi-global deformations oc-

cur with almost no image information in the surrounding neighborhood (see

Fig. 4)(b)). In such a case, using a constant kernel size for elastic registra-

tion is not suitable (see Fig. 4(d)(e)). Higher values of σi also lead to stronger240

regularization while lower values increase the flexibility and allow coping with

larger deformations. To cope with large semi-global deformations due to tis-

sue splits, we introduce an scale-adaptive approach. We use a set of different

values for the parameter σ of the GEBS basis function in Eq. (11) (we used

σi = {1.5, 2.5, 3.0, 4.0}) and compute deformation vector fields for each of these245

kernel sizes. To quantify the registration accuracy for each kernel size we use a

similarity index (SI) based on the Dice coefficient and the Jaccard index using

binary masks of 3D-PLI (refer to Section 5.1 below) and blockface images [24].

Then, the scale σi with the best SI value is used to perform the registration. To

avoid foldings of the deformation vector field, we check whether the determinant250
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of the Jacobian of the deformation vector field is larger or equal to zero. If this

is not the case, we discard the respective deformation vector field.

From Fig. 4 (f) it can be seen that the scale-adaptive approach copes much

better with large semi-global deformations compared to using a constant kernel

size. The deformation grid in Fig. 4 (d) shows that with a constant setting255

of σi = 1.5, we have unrealistic deformations while with a constant setting of

σi = 3 in Fig. 4 (e) the deformations are more realistic but limited to regions

(a) g1 (b) g2 (c) Overlay

(d) σi = 1.5 (e) σi = 3 (f) adaptive σi

Figure 4: Non-rigid registration using scale-adaptive kernels to handle severe tissue splits.

First row: (a) Target blockface image, (b) 3D-PLI image with tissue split represented by a

red arrow, and (c) overlay of (a) on (b). Second row: (d, e, f) Registration results of GEBS-

CnCoT for σi = 1.5, σi = 3, and with scale-adaptive method, respectively. Results are shown

for pyramid level 2. Third row: (d, e, f) Corresponding deformation grids.
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with large overlaps of corresponding image structures. However, the best result

is obtained by the scale-adaptive approach as can be seen in Fig. 4 (f).

5. Feature-based localization and registration260

The ultra-high resolution (uHR) images of the 3D-PLI data cover only a rela-

tively small part of the corresponding high-resolution (HR) images in the used

set up (see Fig. 2). Registration of the uHR and HR images first requires

accurate localization, i.e. finding the corresponding part of a uHR image as

a region-of-interest (ROI) in the HR image. Subsequently, registration is per-265

formed. Localization and registration are challenging due to i) a large difference

in spatial resolution (factor of about 49), ii) a relatively small ROI (see Fig. 1),

iii) regions with mostly similar image structures, iv) strong differences in inten-

sity values, and v) arbitrary translations and orientations of the uHR images

relative to the HR images. In this section, we describe a multi-scale feature-270

based localization and registration approach, which is based on our previous

conference paper [38]. However, unlike [38], we here use a larger set of consec-

utive uHR and HR images, and register each uHR image to the corresponding

HR image which was rigidly registered to the blockface image.

5.1. Robust feature detection275

Our localization approach is based on robust feature detection using differential

operators. We use a Hessian-based feature strength measure in a Gaussian scale

space L(x;σi) that is suitable both for uHR and HR images of 3D PLI data [38]:

Si = σ2
i ·
(
detH+ w · (detH− λ2

1)︸ ︷︷ ︸
E

)
, (17)

where detH = λ1·λ2 is the determinant of the Hessian matrixH with eigenvalues

λ1 and λ2, w = 1− λ2

2·λ1
is a weight depending on the shape of image structures,

and σ2
i is used for scale normalization. The term E in (17) is close to zero for blob-

like structures (λ1≈λ2) and hence only detH is exploited. However, for elliptical

structures, E contributes to Si with its strong discriminative behavior between280
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(a) (b)

Figure 5: Localization and registration of ultra-high resolution images. (a) Establishing corre-

spondence between uHR and (rigidly registered to the reference blockface images) HR retarda-

tion maps, and (b) color overlay (HR in magenta, uHR in green) after similarity transformation

of the uHR image using matched correspondences in (a).

circular shapes (λ1 =λ2) and elliptical shapes (λ1>λ2) in contrast to detH.

Since only salient features are preserved due to larger discrepancy of Si between

image structures, matching ambiguities are minimized. This is important for

3D-PLI images since they include many similar structures at multiple locations.

We used four different scales for feature computation in Gaussian scale space285

for Si (σi ∈ {2.5, 5, 7.5, 10}). The maximum response within a 3× 3 window is

used for extracting the final feature points xk.

5.2. Feature descriptor, matching, and registration

We compute SURF-like feature descriptors [39] using Gaussian derivative filters

(unlike [39] where Haar wavelets are used) to better preserve rotation invari-290

ance which is important for the registration of 3D-PLI data. For each feature

point xk, a dominant orientation within a circular radius of 6σi centered at xk

is estimated. For each of the image points in this circular region, the gradient

∇Lk =
(
Lkx, L

k
y

)T
is computed at scale σi by convolution with first-order Gaus-

sian derivative filters. The dominant orientation θk of the feature point xk is295

obtained as the maximum of the sum of the weighted gradients within a sliding

circle segment of π
3 . For each scale, the feature descriptor comprises in total 64

values that are computed on a 4 × 4 grid. For each grid position, the values
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∑
Lx,

∑
Ly,

∑
|Lx |, and

∑
|Ly | are computed by summing up the components

in a 2 × 2 neighborhood. The whole descriptor vector is re-oriented along the300

dominant direction θk as in [39].

The proposed salient feature detector (Sect. 5.1) and the feature descriptors

described in this section are applied both to the transmittance and retardation

modalities of the uHR and HR 3D-PLI data. The computed feature descriptors

are matched using a FLANN-based matcher [40] with 2-nearest neighborhood305

connectivity. The number of the correctly matched feature points whose con-

necting lines have same direction confirms the localization of the uHR region

within the HR counterpart (see Fig. 5). Using the matched points we com-

pute a similarity transformation (rigid transformation plus scaling) which maps

the uHR image to the HR counterpart (see white region in Fig. 5 (b)). We per-310

formed a quantitative evaluation using simulated transformations, which showed

that our approach outperformed state-of-the-art feature extraction methods (see

Supplementary material).

6. 3D reconstruction pipeline for 3D-PLI data

In this section, we present our complete pipeline for 3D reconstruction of high-315

resolution (64µm) and ultra-high resolution (1.3 µm) 3D-PLI data.

6.1. Pipeline for 3D reconstruction of high-resolution 3D-PLI data

An overview of the pipeline for the 3D reconstruction of high-resolution (64 µm)

3D-PLI images is represented in Fig. 6. Registration of these images comprises

pre-processing, rigid registration, non-rigid registration, and registration quality320

control. Below, we describe these steps in more detail.

Pre-processing. For registration of 3D-PLI data with blockface (BF) images,

localization of the brain within the 3D-PLI data is required (see Fig. 7 (a,

b)). To this end, we segment the brain using a two-step refinement approach

described in [23]. Then we compute the center-of-mass (COM) of the segmented325
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Figure 6: Pipeline for registration of high-resolution 3D-PLI images to corresponding blockface

images.

BF [24] and 3D-PLI images, and compute an initial alignment by matching the

COMs (see Fig. 7 (c), blockface in green and 3D-PLI image in magenta).

Rigid registration. We use a parametric registration model for coarse registra-

tion. Let gBF (x) and gHR(x) be the reference blockface image and the high-

resolution image, respectively, and T (x | θ) be the transformation between them

with θ denoting the set of parameters to be determined. Then, the objective is

to minimize the following discrepancy function ψ:

θ̂ = arg min
θ

ψ
(
gBF (x), gHR

(
T (x | θ)

)
, (18)

where θ̂ is the optimal parameter vector. For solving Eq. (18), we use a spline-

based multi-resolution rigid registration scheme [41]. In order to deal with the

multi-modal data (see Figs. 1 and 2), in contrast to [41, 23], we propose using330

the correlation transform (CoT, ğ) of the image (patch size of 7× 7 pixels). For

the function ψ in Eq. (18) we use the mean squared differences between the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Registration of high-resolution 3D-PLI images. (a, b) Original blockface and trans-

mittance map of 3D-PLI data of a human brain tissue section, (c) center-of-mass alignment

with reference blockface section, (d, e) rigid registration, and (f, g, h) non-rigid registration

using GEBS-CnCoT. In (c, d, h) color overlays are shown of the blockface image (green) and

the 3D-PLI image (magenta), in (e, f) edge overlays of the blockface image on the 3D-PLI

image are shown, and (g) provides the grid deformation.

computed CoTs for the blockface images (ğBF ) and the high-resolution 3D-PLI

images (ğHR) and apply the iterative Levenberg-Marquardt (LM) algorithm [33,

34] for minimization. 7 (d) shows a color overlay of the blockface (in green) and335

transmittance 3D-PLI image (in magenta) after rigid registration. It can be seen

that our rigid registration approach yields a good coarse alignment, however,

local misalignments are visible (e.g., see the region at the top-right). In Fig. 7

(e) a corresponding edge overlay is provided.

Non-rigid registration. After rigid registration, we use our intensity-based non-340

rigid registration method (GEBS-CnCoT) presented in Section 3 to compen-

sate local deformations caused by the sectioning and mounting process. The

employed similarity measure is based on the canonical correlation transform
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(CnCoT), which is well-suited for multi-modal image registration of the 3D-PLI

images with the reference blockface (see Section 3.4 above). For our multi-345

resolution energy minimization approach we use five pyramid levels. To ensure

topology preservation and realistic deformations we check whether the deter-

minant of the Jacobian of the deformation field is larger or equal to zero, i.e.

det(J(u)) ≥ 0. In case of a negative value for det(J(u)), we increase the value of

the scale parameter σ and continue the iteration of the minimization. Our exper-350

iments showed that using σ = 6 always resulted in a positive value for det(J(u))

except for large tissue splits, which are coped with using the scale-adaptive

approach described in Section 4 above. The proposed non-rigid registration

method is able to tackle both small and large deformations as those in Fig. 7

(d, e). It can be seen in Fig. 7 (f, g) that the proposed non-rigid registration355

method accurately registers the reference blockface image to the corresponding

high-resolution 3D-PLI image. Quantitative and qualitative evaluations of the

registration accuracy are described in Section 7 below.

Registration quality control. We use a score (0 ≤ SI ≤ 1) for the registration

quality based on the similarity index SI (average of the Dice coefficient and360

Jaccard index, each computed between binary masks of the reference blockface

image and the warped 3D-PLI image). If the SI value is larger than a thresh-

old TSI (we used TSI = 0.95), we consider the registration to be successful,

otherwise, we use the scale-adaptive registration approach (optimization of the

parameter σ of the GEBS basis function, see Section 4). This approach improves365

the registration in case of large semi-global deformations (tissue splits). In our

pipeline, we use a container C1 which includes all accurately registered 3D-PLI

images (i.e. with SI ≥ 0.95), and a container C2 which includes 3D-PLI images

that need to be registered using the scale-adaptive approach (see Fig. 6). For

example, for the image pair in Fig. 7 (d) we obtained a value of SI = 0.97, and370

thus scale-adaptive registration was not needed for this case.
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Figure 8: Pipeline for registration of ultra-high resolution 3D-PLI images to corresponding

blockface images.

6.2. Pipeline for 3D reconstruction of ultra-high resolution 3D-PLI data

Registration of the ultra-high resolution (uHR) 3D-PLI images with the refer-

ence blockface images (BF) is achieved by the following steps: 1) feature-based

localization and similarity transformation of uHR images as described in Sec-375

tion 5, 2) transformation of the uHR image using the computed deformation field

for the HR image (see Section 6.1), and 3) non-rigid registration of the warped

Figure 9: Registration results (color overlay) for ultra-high resolution images (hippocampus

region). Left: Feature-based registration of uHR with HR (similarity transform), middle:

Computed deformation vectors from non-rigid registration of uHR to blockface (scaled for

visualization), and right: Registration result combining feature-based and non-rigid registra-

tion. Regions with green and magenta color inside the overlap area (white region) indicate

misalignment.
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uHR image to the BF image to compensate deformations caused by time de-

lays between HR and uHR 3D-PLI image acquisitions. The overall pipeline is

presented in Fig. 8.380

7. Experiments and results

For a quantitative evaluation of the different steps of our registration method,

we used 10 different (non-consecutive) temporal human brain sections of the HR

(64 µm) and uHR (1.3 µm) 3D-PLI images. The sections were chosen so that

the whole 3D volume is well represented. We took into account 1) difference in385

shape of brain tissue, and 2) variability of the transformation needed for regis-

tration with the reference blockface data. As performance measure we computed

the mean target registration error (mean TRE) for each registration step using

an average of 106 landmarks for each section of the HR data of the temporal

lobe and an average of 23 landmarks for each section of the uHR data of the390

hippocampus region. The mean TRE is computed as the mean Euclidean dis-

tance between the ground truth positions (i.e., landmarks in BF from an expert)

and the transformed landmark positions of the 3D-PLI data. The landmarks

were determined by an expert (in total 1293 landmarks) by clicking with the

computer mouse on the screen and using different image magnifications. It took395

about 60 hours to specify the landmarks. In addition, we used 126 consecutive

sections from the HR and uHR 3D-PLI data to visually assess the registration

quality in the 3D reconstructed volume.

7.1. Quantitative evaluation

Tab. 1 summarizes the results for the mean TRE for 10 different sections of the400

3D-PLI data. Each section of both the high-resolution and ultra-high resolution

images were registered to the corresponding blockface images. For registration

of the HR images to the blockface images the transmittance data was used, while

for registration of the uHR images to the blockface images both transmittance

and retardation images were used (see Section 5 above). As comparison with405
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Figure 10: Ground truth landmarks. Left: Reference blockface image. Right: Corresponding

high-resolution 3D-PLI image. Colored lines indicate the distance between landmarks. Images

have been scaled for better visualization.

the proposed GEBS-CnCoT method we also applied three other non-rigid reg-

istration methods based on cross-correlation for z -normalized images using the

non-rigid registration method of ANTS (ANTS-CC (z -normalized) [37]), mutual

information using the diffeomorphic method of ANTS (ANTS-SyN-MI [36, 37])

and the correlation transform using GEBS (GEBS-CoT, [23]). We also applied410

ANTS with mutual information (ANTS-MI), which yielded higher target reg-

istration errors than ANTS-CC (z -normalized) and therefore was not included

in Tab. 1. For all methods, the optimal parameters were determined empirically

based on all 10 sections of the 3D-PLI data and kept constant for all experi-

ments performed in this work. The parameter settings for ANTS methods are415

provided in the Supplementary material.

7.1.1. Evaluation using the high-resolution 3D-PLI images

From Tab. 1 (left) it can be seen that the center-of-mass (COM) alignment

yields very large TRE values which indicates that the high-resolution 3D-PLI

images have very large misalignments with respect to the blockface images (av-420

erage TRE of 454 pixels). Using our multi-modal rigid registration method

yields a significantly better result, which is further improved by non-rigid regis-

tration. It can be seen that all non-rigid registration methods generally improve

the accuracy. However, the correlation transform-based GEBS methods (GEBS-
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CoT [23] and the proposed GEBS-CnCoT) yield a higher accuracy compared425

to ANTS-CC (z -normalized) [37] and ANTS-SyN-MI [36, 37]. It should be

noted that ANTS was primarily developed for registration of MRI brain im-

ages [37], however, it was also utilized for registration of histological images to

MRI data [14]. The mean TRE for high-resolution to blockface image regis-

tration for our proposed method (GEBS-CnCoT) is smallest for most of the430

sections. Compared to GEBS-CoT the improvement of the mean TRE is, for

example, 1.6 pixels for section #593 and 1.1 pixels for section #620. Compared

to ANTS-CC (z -normalized) and ANTS-SyN-MI, our new method yields an im-

provement of 5.6 pixels and 3.0 pixels, respectively, for the mean TRE averaged

over all 10 sections. The mean TRE for the proposed method is 3.3 pixels while435

for GEBS-CoT, ANTS-SyN-MI, and ANTS-CC (z -normalized) we have 3.8, 6.3,

and 8.9 pixels, respectively. In addition, the mean standard deviation is lowest

for the proposed method (±2.8 pixels) compared to ANTS-CC (± 5.9 pixels),

ANTS-SyN-MI (± 4.4 pixels), and GEBS-CoT (± 3.6 pixels).

7.1.2. Evaluation using the ultra-high resolution 3D-PLI images440

To quantify the registration accuracy of the ultra-high resolution images, we

downscaled the uHR images to the resolution of the reference blockface images

(64µm). Thus, all results presented in Tab. 1 are for the 64µm resolution,

however, landmarks for uHR data were placed at the original 1.3 µm resolution.

From Tab. 1 (right) it can be seen that the mean TRE for center-of-mass445

alignment (COM) is very large (661.1 pixels). This is due to largely different

rotations, translations, and scale differences between the blockface and the ultra-

high resolution images. Using a similarity transformation and our feature-based

registration approach (see Section 5) provides a good initial alignment with a

mean TRE of 14.0±6.3 pixels (over all 10 sections), however, most sections show450

very large misalignments (> 10 pixels). All non-rigid registration methods im-

prove the registration accuracy for most of the sections. However, the largest

improvements are obtained by the proposed GEBS-CnCoT method, which yields

the highest accuracy compared to the other non-rigid registration methods. For
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Figure 11: Non-rigid registration of three examples of the high-resolution 3D-PLI images to

the corresponding reference blockface images (red contour). First column: Rigid registration,

Second column: Non-rigid registration using GEBS-CnCoT. Third column: Magnitude of the

deformation vector field for GEBS-CnCoT. The values for the magnitude range from zero

(dark blue) to 35 pixels (yellow).

example, GEBS-CnCoT yields an improvement of more than 10 pixels for sec-455

tions #561, #620, and #672 compared to ANTS-CC (z -normalized). Compared

to GEBS-CoT there is an improvement of more than 2 pixels for sections #663,

#672, and #688. The overall mean TRE for GEBS-CnCoT is 4.8±4.0 pixels

while for ANTS-CC (z -normalized), ANTS-SyN-MI, and GEBS-CoT we have

11.5± 4.6, 9.4±6.0 pixels and 6.4±4.3 pixels, respectively.460

7.2. Visual assessment of the high-resolution 3D-PLI images

In Fig. 11 we show registration results for three examples of the high-resolution

3D-PLI images. It can be seen that after rigid registration there are relatively
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Figure 12: 3D cut-through visualization (left) and volume rendering (right) of the 3D recon-

structed high-resolution images (3D-PLI, transmittance) of the temporal lobe of the human

brain using rigid (top) and non-rigid registration (bottom).

large misalignments for both the internal white matter region (dark intensities)

and the outer grey matter region (bright intensities) (see Fig. 11, first column).465

These misalignments strongly affect the quality of the 3D reconstruction. In

the 3D cut-through visualization in Fig. 12 (top), one can observe that the sec-

tions are not coherently aligned (several misaligned regions are marked by blue

arrows). Due to the large misalignments ghost-like artifacts are also observed

(marked by red arrows in Fig. 12 (top left)). Also the rendered 3D volume rep-470

resentation in Fig. 12 (top right) clearly reveals that very large misalignments

are present between sections. However, after non-rigid registration using our

GEBS-CnCoT method both the white matter and the grey matter regions in

the 3D-PLI data are aligned well (see Fig. 11, second column). For accurate

registration, both small and large deformations are needed as indicated by the475
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Figure 13: Reference blockface image (left) and registered 3D-PLI transmittance image (right).

Shown are the xz -plane (top) and the yz -plane (bottom). Vessel structures can be observed

in the white matter region at same locations for both registered modalities indicating that the

images are well registered.

displayed magnitudes of the deformation field in Fig. 11 (third column). From

the 3D cut-through visualization and the 3D rendering in Fig. 12 (bottom) it

can be seen that the sections are coherently aligned after non-rigid registra-

tion and that the 3D reconstruction has a much better quality compared to

rigid registration (Fig. 12 (top)). The observed continuity at various distinctive480

tissue grooves (sulci) and ridges (gyri) indicates that the sections are accu-

rately aligned. In order to confirm the quality of the registration, we further

present xz - and yz -orthogonal views of the registered 3D-PLI volume and com-

pare them with the reference blockface volume in Fig. 13. It can be seen that

the white matter and gray matter regions are coherently aligned. Additionally,485

in both views one can observe well reconstructed vessel structures (e.g., see the

blue arrows marked in each view). For 3D-PLI, vessel structures have a higher

birefringence effect compared to the fiber structures. Both the structure and

location of these vessels in the registered 3D-PLI data matches to that of the

blockface data. Shaded regions in Fig. 13 (right) are due to intensity variation490

because of differences in acquisition times and very large tissue splits in few

sections, and not due to misalignment. Thus, vessel structures better indicate

the quality of the alignment (blue arrows).

In Fig. 14 we show a 3D reconstruction based on 3D-PLI retardation images

(which have a higher contrast in the white matter region compared to the gray495
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Figure 14: 3D reconstruction of the white matter region of the temporal lobe of the human

brain. Retardation images of the high-resolution 3D-PLI data were used.

matter region). It can be observed that the sections are coherently registered.

Few misalignments are due to missing parts (e.g., see top left region).

7.3. Visual assessment of the ultra-high resolution 3D-PLI images

Orthogonal views for two different subregions of the hippocampus (dentate gyrus

and cornu ammonis region) of the 3D reconstructed uHR 3D-PLI data are shown500

in Fig. 15 (right). For comparison, the same views are provided for the reference

blockface volume Fig. 15 (middle). It can be seen that the reconstructed data

well follows the shape variations of the structures in the reference blockface data

at most locations (e.g., see the top right, middle, and left tissue boundaries in

both orthogonal views). The few zigzag boundaries in the reconstructed 3D-505

PLI data are due to missing tissue parts in the sections at those locations. A

rendered 3D reconstructed volume of the uHR 3D-PLI data is shown in Fig. 16.

The 3D reconstruction also shows coherently aligned cornu ammonis (CA) and

dendate gyrus (DG) regions (indicated by arrows).
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Axial view Blockface volume Registered uHR volume

Figure 15: Coronal (top) and sagittal (bottom) views of 3D reconstructed ultra-high resolu-

tion (1.3 µm) 3D-PLI volume (right) and reference blockface volume (middle) for subregions

(positions indicated by cross-hairs) corresponding to the dendate gyrus (DG) and the cornu

ammonis (CA) (left). Note that discontinuities at the periphery of the views are mainly due

to missing brain tissue parts.

7.4. Fiber orientation map for 3D-PLI data510

Fiber orientation maps (FOMs) for registered HR (64 µm×64 µm×70 µm) and

uHR (1.3 µm×1.3 µm×70 µm) (scaled for visualization) sections are presented

in Fig. 17 (top left and top right). The FOM of an enlarged region around

the hippocampus in the uHR image shown in Fig. 17 (bottom) reveals detailed

information about the fiber orientations for subregions like dentate gyrus, alveus,515

and cornu ammonis [20]. FOMs were computed based on the inclination and the

direction images of the 3D-PLI data (for details on FOMs we refer to [1, 20]).

Note that the different modalities of the 3D-PLI data at a certain resolution

(1.3 µm or 64µm) are aligned. Therefore, the transformations obtained by
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Figure 16: 3D reconstruction of ultra-high resolution 3D-PLI images (1.3µm, retardation).

Cornus ammonis (CA) and dentate gyrus (DG) regions are indicated by arrows in the recon-

structed volume.

registering either transmittance or retardation images can be directly applied520

to the inclination and direction images.

8. Discussion

We have presented a registration method for 3D reconstruction of multi-scale

and multi-modal 3D-PLI data of the temporal lobe of the human brain. We

considered 3D-PLI data acquired at 64 µm (HR data) and 1.3 µm (uHR data)525

resolution. While the HR data covers the whole temporal lobe region, the uHR

data represents the hippocampus region. Since spatial coherence is lost during

the sectioning and mounting process, registration is inevitable. To establish

coherent 3D volumes, the HR and uHR 3D-PLI data are registered to the corre-

sponding reference blockface data. Registration needs to cope with both global530

and local misalignments and hence both rigid (or affine) and non-rigid regis-

tration methods are required. Since brain tissue deformations occur during the

33



Figure 17: Fiber orientation maps (FOMs) obtained from registered high-resolution (top left)

and ultra-high resolution (top right) 3D-PLI images (direction and inclination images) of

Fig 1. The FOM of the enlarged region of the ultra-high resolution image (bottom) includes

different human hippocampal subregions (CA1-4) at 1.3 µm resolution.

sectioning and mounting process, it is important to use an elastic deformation

model for tissues. Other methods using B-splines [13] or the demons [7] are not

based on a physical deformation model, and are limited by the chosen grid or are535

not well suited for large deformations. In addition, the image similarity metric
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for registration and the type of regularization need to be well adapted to the

special characteristics of multi-modal 3D-PLI data. Unlike [6, 11], where macro-

scale data (1mm and 200µm, respectively) of the hippocampus was used, we

consider micro-scale (1.3 µm) resolution 3D-PLI data. At this ultra-high resolu-540

tion, an image covers a much smaller brain region compared to a corresponding

high-resolution image (64µm) (see Fig. 2). This increases the difficulty of the

registration task (scaling factor of about 49). To cope with this problem we use a

feature-based localization and registration approach. To our knowledge, it is the

first time that uHR 3D-PLI images (1.3 µm) were used for 3D reconstruction,545

and that large stacks of HR and uHR images (0.88 cm in z -direction) were con-

sidered. Moreover, we proposed a physically-based elastic registration method

in conjunction with a robust multi-modal similarity metric and a scale-adaptive

technique to cope with both small and large deformations as well as a robust

feature-based localization method for coherent 3D reconstruction.550

In Section 3, we presented our non-rigid registration method (GEBS-CnCoT)

which relies on a physical deformation model. The proposed method is based

on Gaussian elastic body splines (which are solutions of the Navier equation

from the theory of elasticity), it exploits the canonical correlation transform

CnCoT for the image similarity metric, and comprises efficient regularizers. The555

advantage of the proposed CnCoT is that it integrates neighborhood information

which increases the robustness of the data term (similarity measure). The main

reason for improvement in accuracy and robustness (see Tab. 1, lowest mean

TRE for 10 different 3D-PLI sections evaluated at different scales) is that the

self-similarity of the patches is exploited in contrast to using information at560

single pixels (GEBS-CoT) [23]. Whereas in [42, 43] image gradient information is

used for self-similarity, we here use the canonical correlation transform. This has

the advantage that the intensity information is directly exploited, and, moreover,

the computation of the patch matrices is fast and numerically stable. This is

very important in our application of registering challenging multi-modal 3D-565

PLI image data. We demonstrated that our proposed method is well-suited

for registration of the multi-modal 3D-PLI data and better handles complex
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deformations compared to previous methods (e.g., [36, 37, 35, 23]). We found

that GEBS-CnCoT well copes with both large and small deformations and yields

accurate registration results. In Section 4, we proposed an extension of GEBS-570

CnCoT by a scale-adaptive method to handle large semi-global deformations

due to tissue splits in some histological sections.

The uHR images (1.3 µm) need to be first localized and then registered to

the region-of-interest within the corresponding HR images or blockface images

(64µm) as is evident from Fig. 2. To this end, we presented a feature-based575

approach for localization and registration of uHR images in Section 5. The

approach was validated and compared with state-of-the-art feature extraction

methods including SURF [39], SIFT [44], ORB [45], detH [46], and AKAZE [47]

(see Supplementary material). It turned out that our approach outperformed

previous methods in terms of both accuracy (lowest TRE) and robustness (e.g.,580

invariance to contrast and rotation changes). For initial alignment of the HR

data to blockface data, we proposed a multi-modal rigid registration method

based on the correlation transform. We also presented the complete pipeline for

3D reconstruction of both HR and uHR 3D-PLI data. For registration of uHR

3D-PLI images to the reference blockface images we make use of the computed585

deformation fields from non-rigid registration of the HR images to the blockface

images (see Figs. 8 and 9). In addition, to cope with time delays of HR and

uHR image acquisition, we perform non-rigid registration of the uHR images

with the blockface images using GEBS-CnCoT (see Fig. 8).

Our proposed registration method was applied to 126 consecutive sections590

of the 3D-PLI data of the temporal lobe of the human brain. We performed

a quantitative performance evaluation using 10 different 3D-PLI images (both

HR and uHR data) and more than 1200 ground truth landmarks (about 106

landmarks per section for the HR data and about 23 landmarks per section for

the uHR data). The results presented in Tab. 1 revealed that the proposed595

non-rigid registration method considerably improves the registration accuracy

compared to existing non-rigid registration methods. The registration accuracy

of GEBS-CnCoT is much better (3.3 pixels and 4.8 pixels for HR and uHR
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data, respectively) compared to the state-of-the-art methods ANTS-CC [37]

using z -normalized images (8.9 pixels and 11.5 pixels for HR and uHR data,600

respectively), and ANTS-SyN-MI [36, 37] using mutual information and dif-

feomorphic transformations (6.3 pixels and 9.4 pixels for HR and uHR data,

respectively). In addition, the proposed GEBS-CnCoT registration can cope

with missing tissue parts and tissue ruptures as demonstrated in Fig. 11 (third

row) while many existing non-rigid registration methods are misled by missing605

tissue as reported in [19].

In our registration method, prior rigid registration is performed for coarse

alignment of the HR images (which tackles arbitrary rotations and translations

of the sections, see Fig. 7 (c-e) and Fig. 12 (top)) and subsequently non-rigid

GEBS-CnCoT registration is used to improve the result (see Fig. 7 (f-h) and610

Fig. 12 (bottom)). Visual assessment of the registered HR images showed a

coherent alignment of sulci and gyri (Fig. 12, bottom left) which qualitatively

validates the effectiveness of the proposed method. The quality of the registra-

tion of HR 3D-PLI data was also confirmed by the coherent alignment of the

white matter as can be seen in Fig. 14. Regarding the registration quality of the615

uHR images (hippocampus region), orthogonal views of the 3D reconstructed

volume revealed that the registered uHR data agrees well with the reference

blockface volume (Fig. 15). Corresponding brain structures are located at sim-

ilar positions in both the uHR volume and the blockface volume indicated by

the cross-hair labelled in blue (dentate gyrus at the top, and cornu ammonis at620

the bottom). The coherence of the brain structures can also be observed in the

3D reconstructed uHR volume presented in Fig. 16.

In future work, we will extend our method to better cope with sections with

missing tissue parts by exploiting information from other 3D-PLI modalities.

Based on the reconstructed 3D volumes, fiber tracking could be performed to625

determine the human brain connectome. We also plan to identify and localize

hippocampus regions in the reconstructed 3D volumes at multiple resolutions

which are interesting for neuroscientists. Furthermore, we will use our registra-

tion method for 3D reconstruction of 3D-PLI data of other primate brains such
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as vervet and rat.630

9. Conclusions

We have presented a novel non-rigid registration method as well as a com-

plete pipeline for 3D reconstruction of both high-resolution (64 µm) and ultra-

high resolution (1.3 µm) 3D-PLI data. We introduced a new similarity metric

for spline-based non-rigid registration using the canonical correlation transform635

which is well-suited for multi-modal 3D-PLI registration. In addition, we in-

troduced a normalized separable filter and structure preserving diffusion for

regularization of the deformation fields. We also proposed a scale-adaptive non-

rigid registration method to tackle large semi-global deformations due to tissue

splits. A rigid registration approach based on a correlation transform metric640

was introduced for robust coarse alignment of high-resolution 3D-PLI images.

We also described a feature-based localization and registration approach for

ultra-high resolution 3D-PLI images. Advantages of the presented method com-

pared to existing methods were demonstrated using both synthetic data and

3D-PLI data. Our quantitative and qualitative assessments revealed that the645

proposed registration method is well-suited for coherent 3D reconstruction of

3D-PLI data.
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Appendix A.

The energy E
(
u,uI

)
in Eq. (1) is minimized w.r.t. u when ∂E

∂u = 0. Differ-

entiating the quadratic regularization term in Eq. (8) w.r.t. u yields

λI
∂(ψI)

∂u
= 2λI

∫
fσ,α(x− ξ)(uI(ξ)− u(x))dξ (A.1)

Differentiating the elastic regularization term in Eq. (7) w.r.t. u, we have

λE
∂(ψelastic)

∂u
= λEµ∆u + (λ+ µ)∇ (div u) (A.2)

Thus, we obtain

∂E

∂u
= µ∆u + (λ+µ)∇ (div u) + εI

∫
fσ,α(x− ξ)(uI(ξ)−u(x)) dξ = 0, (A.3)

where εI = 2 λI

λE
.
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