000851351 001__ 851351
000851351 005__ 20240712112832.0
000851351 0247_ $$2doi$$a10.1021/acsami.8b05902
000851351 0247_ $$2ISSN$$a1944-8244
000851351 0247_ $$2ISSN$$a1944-8252
000851351 0247_ $$2pmid$$apmid:29894641
000851351 0247_ $$2WOS$$aWOS:000438179000055
000851351 0247_ $$2altmetric$$aaltmetric:46727802
000851351 037__ $$aFZJ-2018-05036
000851351 082__ $$a540
000851351 1001_ $$0P:(DE-Juel1)161141$$aYu, Shicheng$$b0$$eCorresponding author
000851351 245__ $$aMonolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility
000851351 260__ $$aWashington, DC$$bSoc.$$c2018
000851351 3367_ $$2DRIVER$$aarticle
000851351 3367_ $$2DataCite$$aOutput Types/Journal article
000851351 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1536153462_464
000851351 3367_ $$2BibTeX$$aARTICLE
000851351 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851351 3367_ $$00$$2EndNote$$aJournal Article
000851351 520__ $$aHigh interfacial resistance between solid electrolyte and electrode of ceramic all-solid-state batteries is a major reason for the reduced performance of these batteries. A solid-state battery using a monolithic all-phosphate concept based on screen printed thick LiTi2(PO4)3 anode and Li3V2(PO4)3 cathode composite layers on a densely sintered Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte has been realized with competitive cycling performance. The choice of materials was primarily based on the (electro-)chemical and mechanical matching of the components instead of solely focusing on high-performance of individual components. Thus, the battery utilized a phosphate backbone in combination with tailored morphology of the electrode materials to ensure good interfacial matching for a durable mechanical stability. Moreover, the operating voltage range of the active materials matches with the intrinsic electrochemical window of the electrolyte which resulted in high electrochemical stability. A highly competitive discharge capacity of 63.5 mAh g–1 at 0.39 C after 500 cycles, corresponding to 84% of the initial discharge capacity, was achieved. The analysis of interfacial charge transfer kinetics confirmed the structural and electrical properties of the electrodes and their interfaces with the electrolyte, as evidenced by the excellent cycling performance of the all-phosphate solid-state battery. These interfaces have been studied via impedance analysis with subsequent distribution of relaxation times analysis. Moreover, the prepared solid-state battery could be processed and operated in air atmosphere owing to the low oxygen sensitivity of the phosphate materials. The analysis of electrolyte/electrode interfaces after cycling demonstrates that the interfaces remained stable during cycling.
000851351 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000851351 588__ $$aDataset connected to CrossRef
000851351 7001_ $$0P:(DE-Juel1)166415$$aMertens, Andreas$$b1$$ufzj
000851351 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b2$$ufzj
000851351 7001_ $$0P:(DE-Juel1)161348$$aSchierholz, Roland$$b3$$ufzj
000851351 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b4$$ufzj
000851351 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b5$$ufzj
000851351 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.8b05902$$gVol. 10, no. 26, p. 22264 - 22277$$n26$$p22264 - 22277$$tACS applied materials & interfaces$$v10$$x1944-8252$$y2018
000851351 8564_ $$uhttps://juser.fz-juelich.de/record/851351/files/acsami.8b05902.pdf$$yRestricted
000851351 8564_ $$uhttps://juser.fz-juelich.de/record/851351/files/acsami.8b05902.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851351 909CO $$ooai:juser.fz-juelich.de:851351$$pVDB
000851351 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851351 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851351 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000851351 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2015
000851351 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851351 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851351 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851351 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851351 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851351 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000851351 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2015
000851351 9141_ $$y2018
000851351 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161141$$aForschungszentrum Jülich$$b0$$kFZJ
000851351 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b2$$kFZJ
000851351 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161348$$aForschungszentrum Jülich$$b3$$kFZJ
000851351 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b4$$kFZJ
000851351 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b5$$kFZJ
000851351 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b5$$kRWTH
000851351 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000851351 920__ $$lyes
000851351 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000851351 980__ $$ajournal
000851351 980__ $$aVDB
000851351 980__ $$aI:(DE-Juel1)IEK-9-20110218
000851351 980__ $$aUNRESTRICTED
000851351 981__ $$aI:(DE-Juel1)IET-1-20110218