001     851404
005     20220930130156.0
024 7 _ |a 10.1016/j.nicl.2018.08.024
|2 doi
024 7 _ |a 2128/19679
|2 Handle
024 7 _ |a pmid:30175040
|2 pmid
024 7 _ |a WOS:000450799000058
|2 WOS
024 7 _ |a altmetric:47104564
|2 altmetric
037 _ _ |a FZJ-2018-05053
082 _ _ |a 610
100 1 _ |a Lohmann, Philipp
|0 P:(DE-Juel1)145110
|b 0
|e Corresponding author
245 _ _ |a Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis
260 _ _ |a [Amsterdam u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1536837249_30556
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Background
The aim of this study was to investigate the potential of combined textural feature analysis of contrast-enhanced MRI (CE-MRI) and static O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET for the differentiation between local recurrent brain metastasis and radiation injury since CE-MRI often remains inconclusive.
Methods
Fifty-two patients with new or progressive contrast-enhancing brain lesions on MRI after radiotherapy (predominantly stereotactic radiosurgery) of brain metastases were additionally investigated using FET PET. Based on histology (n = 19) or clinicoradiological follow-up (n = 33), local recurrent brain metastases were diagnosed in 21 patients (40%) and radiation injury in 31 patients (60%). Forty-two textural features were calculated on both unfiltered and filtered CE-MRI and summed FET PET images (20–40 min p.i.), using the software LIFEx. After feature selection, logistic regression models using a maximum of five features to avoid overfitting were calculated for each imaging modality separately and for the combined FET PET/MRI features. The resulting models were validated using cross-validation. Diagnostic accuracies were calculated for each imaging modality separately as well as for the combined model.
Results
For the differentiation between radiation injury and recurrence of brain metastasis, textural features extracted from CE-MRI had a diagnostic accuracy of 81% (sensitivity, 67%; specificity, 90%). FET PET textural features revealed a slightly higher diagnostic accuracy of 83% (sensitivity, 88%; specificity, 75%). However, the highest diagnostic accuracy was obtained when combining CE-MRI and FET PET features (accuracy, 89%; sensitivity, 85%; specificity, 96%).
Conclusions
Our findings suggest that combined FET PET/CE-MRI radiomics using textural feature analysis offers a great potential to contribute significantly to the management of patients with brain metastases.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kocher, Martin
|0 P:(DE-Juel1)173675
|b 1
|u fzj
700 1 _ |a Ceccon, Garry
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bauer, Elena K.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Stoffels, Gabriele
|0 P:(DE-Juel1)131627
|b 4
|u fzj
700 1 _ |a Viswanathan, Shivakumar
|0 P:(DE-Juel1)162395
|b 5
700 1 _ |a Ruge, Maximilian I.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Neumaier, Bernd
|0 P:(DE-Juel1)166419
|b 7
|u fzj
700 1 _ |a Shah, Nadim J.
|0 P:(DE-Juel1)131794
|b 8
|u fzj
700 1 _ |a Fink, Gereon R.
|0 P:(DE-Juel1)131720
|b 9
|u fzj
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 10
|u fzj
700 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 11
|u fzj
773 _ _ |a 10.1016/j.nicl.2018.08.024
|g p. S2213158218302651
|0 PERI:(DE-600)2701571-3
|p 537 - 542
|t NeuroImage: Clinical
|v 20
|y 2018
|x 2213-1582
856 4 _ |u https://juser.fz-juelich.de/record/851404/files/17210CV5.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/851404/files/1-s2.0-S2213158218302651-main.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/851404/files/17210CV5.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/851404/files/17210CV5.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/851404/files/17210CV5.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/851404/files/17210CV5.jpg?subformat=icon-640
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/851404/files/17210CV5.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/851404/files/1-s2.0-S2213158218302651-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:851404
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)173675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131627
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)162395
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)166419
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)143792
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE-CLIN : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21