000851423 001__ 851423
000851423 005__ 20210121101111.0
000851423 0247_ $$2doi$$a10.1007/s00382-018-4147-x
000851423 0247_ $$2ISSN$$a0930-7575
000851423 0247_ $$2ISSN$$a1432-0894
000851423 0247_ $$2Handle$$a2128/23757
000851423 0247_ $$2altmetric$$aaltmetric:33503239
000851423 0247_ $$2WOS$$aWOS:000543522300018
000851423 037__ $$aFZJ-2018-05070
000851423 041__ $$aEnglish
000851423 082__ $$a550
000851423 1001_ $$0P:(DE-Juel1)158027$$aKnist, Sebastian$$b0$$eCorresponding author
000851423 245__ $$aEvaluation and projected changes of precipitation statistics in convection-permitting WRF climate simulations over Central Europe
000851423 260__ $$aBerlin$$bSpringer$$c2020
000851423 3367_ $$2DRIVER$$aarticle
000851423 3367_ $$2DataCite$$aOutput Types/Journal article
000851423 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611146961_3582
000851423 3367_ $$2BibTeX$$aARTICLE
000851423 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851423 3367_ $$00$$2EndNote$$aJournal Article
000851423 520__ $$aWe perform simulations with the WRF regional climate model at 12 and 3 km grid resolution for the current and future climates over Central Europe and evaluate their added value with a focus on the daily cycle and frequency distribution of rainfall and the relation between extreme precipitation and air temperature. First, a 9 year period of ERA-Interim driven simulations is evaluated against observations; then global climate model runs (MPI-ESM-LR RCP4.5 scenario) are downscaled and analyzed for three 12-year periods: a control, a mid-of-century and an end-of-century projection. The higher resolution simulations reproduce both the diurnal cycle and the hourly intensity distribution of precipitation more realistically compared to the 12 km simulation. Moreover, the observed increase of the temperature–extreme precipitation scaling from the Clausius–Clapeyron (C–C) scaling rate of ~ 7% K−1 to a super-adiabatic scaling rate for temperatures above 11 °C is reproduced only by the 3 km simulation. The drop of the scaling rates at high temperatures under moisture limited conditions differs between sub-regions. For both future scenario time spans both simulations suggest a slight decrease in mean summer precipitation and an increase in hourly heavy and extreme precipitation. This increase is stronger in the 3 km runs. Temperature–extreme precipitation scaling curves in the future climate are projected to shift along the 7% K−1 trajectory to higher peak extreme precipitation values at higher temperatures. The curves keep their typical shape of C–C scaling followed by super-adiabatic scaling and a drop-off at higher temperatures due to moisture limitation.
000851423 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000851423 536__ $$0G:(EU-Grant)654359$$aeLTER - European Long-Term Ecosystem and socio-ecological Research Infrastructure (654359)$$c654359$$fH2020-INFRAIA-2014-2015$$x1
000851423 588__ $$aDataset connected to CrossRef
000851423 7001_ $$0P:(DE-Juel1)156253$$aGoergen, Klaus$$b1
000851423 7001_ $$00000-0003-3001-8642$$aSimmer, Clemens$$b2
000851423 770__ $$aConvection permitting climate modelling
000851423 773__ $$0PERI:(DE-600)1471747-5$$a10.1007/s00382-018-4147-x$$p325-341$$tClimate dynamics$$v55$$x0930-7575$$y2020
000851423 8564_ $$uhttps://juser.fz-juelich.de/record/851423/files/KnistS2018a.pdf$$yOpenAccess
000851423 909CO $$ooai:juser.fz-juelich.de:851423$$popen_access$$popenaire$$pdnbdelivery$$pec_fundedresources$$pVDB$$pVDB:Earth_Environment$$pdriver
000851423 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156253$$aForschungszentrum Jülich$$b1$$kFZJ
000851423 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000851423 9141_ $$y2019
000851423 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851423 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000851423 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851423 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCLIM DYNAM : 2015
000851423 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851423 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851423 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851423 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851423 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000851423 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851423 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851423 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851423 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000851423 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851423 920__ $$lyes
000851423 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000851423 980__ $$ajournal
000851423 980__ $$aVDB
000851423 980__ $$aUNRESTRICTED
000851423 980__ $$aI:(DE-Juel1)IBG-3-20101118
000851423 9801_ $$aFullTexts