000851425 001__ 851425
000851425 005__ 20250317091731.0
000851425 0247_ $$2doi$$a10.5194/gmd-11-2875-2018
000851425 0247_ $$2ISSN$$a1991-959X
000851425 0247_ $$2ISSN$$a1991-9603
000851425 0247_ $$2Handle$$a2128/19655
000851425 0247_ $$2WOS$$aWOS:000438637700005
000851425 0247_ $$2altmetric$$aaltmetric:47992028
000851425 037__ $$aFZJ-2018-05072
000851425 041__ $$aEnglish
000851425 082__ $$a910
000851425 1001_ $$0P:(DE-Juel1)168536$$aSharples, Wendy$$b0$$eCorresponding author
000851425 245__ $$aA run control framework to streamline profiling, porting, and tuning simulation runs and provenance tracking of geoscientific applications
000851425 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2018
000851425 3367_ $$2DRIVER$$aarticle
000851425 3367_ $$2DataCite$$aOutput Types/Journal article
000851425 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552653786_21967
000851425 3367_ $$2BibTeX$$aARTICLE
000851425 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851425 3367_ $$00$$2EndNote$$aJournal Article
000851425 520__ $$aGeoscientific modeling is constantly evolving, with next-generation geoscientific models and applications placing large demands on high-performance computing (HPC) resources. These demands are being met by new developments in HPC architectures, software libraries, and infrastructures. In addition to the challenge of new massively parallel HPC systems, reproducibility of simulation and analysis results is of great concern. This is due to the fact that next-generation geoscientific models are based on complex model implementations and profiling, modeling, and data processing workflows. Thus, in order to reduce both the duration and the cost of code migration, aid in the development of new models or model components, while ensuring reproducibility and sustainability over the complete data life cycle, an automated approach to profiling, porting, and provenance tracking is necessary. We propose a run control framework (RCF) integrated with a workflow engine as a best practice approach to automate profiling, porting, provenance tracking, and simulation runs. Our RCF encompasses all stages of the modeling chain: (1) preprocess input, (2) compilation of code (including code instrumentation with performance analysis tools), (3) simulation run, and (4) postprocessing and analysis, to address these issues. Within this RCF, the workflow engine is used to create and manage benchmark or simulation parameter combinations and performs the documentation and data organization for reproducibility. In this study, we outline this approach and highlight the subsequent developments scheduled for implementation born out of the extensive profiling of ParFlow. We show that in using our run control framework, testing, benchmarking, profiling, and running models is less time consuming and more robust than running geoscientific applications in an ad hoc fashion, resulting in more efficient use of HPC resources, more strategic code development, and enhanced data integrity and reproducibility.
000851425 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000851425 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000851425 536__ $$0G:(EU-Grant)676629$$aEoCoE - Energy oriented Centre of Excellence for computer applications (676629)$$c676629$$fH2020-EINFRA-2015-1$$x2
000851425 536__ $$0G:(EU-Grant)676553$$aPOP - Performance Optimisation and Productivity (676553)$$c676553$$fH2020-EINFRA-2015-1$$x3
000851425 536__ $$0G:(DE-Juel1)jzam11_20091101$$aScalable Performance Analysis of Large-Scale Parallel Applications (jzam11_20091101)$$cjzam11_20091101$$fScalable Performance Analysis of Large-Scale Parallel Applications$$x4
000851425 536__ $$0G:(DE-Juel1)jibg31_20160501$$aWater4Enery (jibg31_20160501)$$cjibg31_20160501$$fWater4Enery$$x5
000851425 536__ $$0G:(DE-Juel-1)ATMLPP$$aATMLPP - ATML Parallel Performance (ATMLPP)$$cATMLPP$$x6
000851425 536__ $$0G:(DE-Juel-1)ATMLAO$$aATMLAO - ATML Application Optimization and User Service Tools (ATMLAO)$$cATMLAO$$x7
000851425 588__ $$aDataset connected to CrossRef
000851425 7001_ $$0P:(DE-Juel1)144419$$aZhukov, Ilya$$b1$$ufzj
000851425 7001_ $$0P:(DE-Juel1)132112$$aGeimer, Markus$$b2$$ufzj
000851425 7001_ $$0P:(DE-Juel1)156253$$aGörgen, Klaus$$b3
000851425 7001_ $$0P:(DE-Juel1)7757$$aLührs, Sebastian$$b4
000851425 7001_ $$0P:(DE-Juel1)138707$$aBreuer, Thomas$$b5$$ufzj
000851425 7001_ $$0P:(DE-Juel1)169794$$aNaz, Bibi$$b6
000851425 7001_ $$0P:(DE-Juel1)168310$$aKulkarni, Ketan$$b7$$ufzj
000851425 7001_ $$0P:(DE-Juel1)172089$$aBrdar, Slavko$$b8
000851425 7001_ $$0P:(DE-Juel1)151405$$aKollet, Stefan$$b9$$ufzj
000851425 773__ $$0PERI:(DE-600)2456725-5$$a10.5194/gmd-11-2875-2018$$gVol. 11, no. 7, p. 2875 - 2895$$n7$$p2875 - 2895$$tGeoscientific model development$$v11$$x1991-9603$$y2018
000851425 8564_ $$uhttps://juser.fz-juelich.de/record/851425/files/invoice_Helmholtz-PUC-2018-38.pdf
000851425 8564_ $$uhttps://juser.fz-juelich.de/record/851425/files/Sharples2018a.pdf$$yOpenAccess
000851425 8564_ $$uhttps://juser.fz-juelich.de/record/851425/files/invoice_Helmholtz-PUC-2018-38.pdf?subformat=pdfa$$xpdfa
000851425 8564_ $$uhttps://juser.fz-juelich.de/record/851425/files/Sharples2018a.gif?subformat=icon$$xicon$$yOpenAccess
000851425 8564_ $$uhttps://juser.fz-juelich.de/record/851425/files/Sharples2018a.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000851425 8564_ $$uhttps://juser.fz-juelich.de/record/851425/files/Sharples2018a.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000851425 8564_ $$uhttps://juser.fz-juelich.de/record/851425/files/Sharples2018a.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000851425 8564_ $$uhttps://juser.fz-juelich.de/record/851425/files/Sharples2018a.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000851425 8767_ $$8Helmholtz-PUC-2018-38$$92018-10-01$$d2018-10-11$$eAPC$$jZahlung erfolgt$$pgmd-2017-242
000851425 909CO $$ooai:juser.fz-juelich.de:851425$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000851425 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168536$$aForschungszentrum Jülich$$b0$$kFZJ
000851425 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144419$$aForschungszentrum Jülich$$b1$$kFZJ
000851425 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132112$$aForschungszentrum Jülich$$b2$$kFZJ
000851425 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156253$$aForschungszentrum Jülich$$b3$$kFZJ
000851425 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7757$$aForschungszentrum Jülich$$b4$$kFZJ
000851425 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138707$$aForschungszentrum Jülich$$b5$$kFZJ
000851425 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169794$$aForschungszentrum Jülich$$b6$$kFZJ
000851425 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168310$$aForschungszentrum Jülich$$b7$$kFZJ
000851425 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172089$$aForschungszentrum Jülich$$b8$$kFZJ
000851425 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151405$$aForschungszentrum Jülich$$b9$$kFZJ
000851425 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000851425 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000851425 9141_ $$y2018
000851425 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851425 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000851425 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851425 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOSCI MODEL DEV : 2015
000851425 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000851425 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000851425 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851425 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851425 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851425 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000851425 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851425 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851425 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851425 920__ $$lyes
000851425 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000851425 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000851425 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000851425 980__ $$ajournal
000851425 980__ $$aVDB
000851425 980__ $$aI:(DE-Juel1)IBG-3-20101118
000851425 980__ $$aI:(DE-Juel1)JSC-20090406
000851425 980__ $$aI:(DE-82)080012_20140620
000851425 980__ $$aAPC
000851425 980__ $$aUNRESTRICTED
000851425 9801_ $$aAPC
000851425 9801_ $$aFullTexts