001     851425
005     20250317091731.0
024 7 _ |a 10.5194/gmd-11-2875-2018
|2 doi
024 7 _ |a 1991-959X
|2 ISSN
024 7 _ |a 1991-9603
|2 ISSN
024 7 _ |a 2128/19655
|2 Handle
024 7 _ |a WOS:000438637700005
|2 WOS
024 7 _ |a altmetric:47992028
|2 altmetric
037 _ _ |a FZJ-2018-05072
041 _ _ |a English
082 _ _ |a 910
100 1 _ |a Sharples, Wendy
|0 P:(DE-Juel1)168536
|b 0
|e Corresponding author
245 _ _ |a A run control framework to streamline profiling, porting, and tuning simulation runs and provenance tracking of geoscientific applications
260 _ _ |a Katlenburg-Lindau
|c 2018
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552653786_21967
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Geoscientific modeling is constantly evolving, with next-generation geoscientific models and applications placing large demands on high-performance computing (HPC) resources. These demands are being met by new developments in HPC architectures, software libraries, and infrastructures. In addition to the challenge of new massively parallel HPC systems, reproducibility of simulation and analysis results is of great concern. This is due to the fact that next-generation geoscientific models are based on complex model implementations and profiling, modeling, and data processing workflows. Thus, in order to reduce both the duration and the cost of code migration, aid in the development of new models or model components, while ensuring reproducibility and sustainability over the complete data life cycle, an automated approach to profiling, porting, and provenance tracking is necessary. We propose a run control framework (RCF) integrated with a workflow engine as a best practice approach to automate profiling, porting, provenance tracking, and simulation runs. Our RCF encompasses all stages of the modeling chain: (1) preprocess input, (2) compilation of code (including code instrumentation with performance analysis tools), (3) simulation run, and (4) postprocessing and analysis, to address these issues. Within this RCF, the workflow engine is used to create and manage benchmark or simulation parameter combinations and performs the documentation and data organization for reproducibility. In this study, we outline this approach and highlight the subsequent developments scheduled for implementation born out of the extensive profiling of ParFlow. We show that in using our run control framework, testing, benchmarking, profiling, and running models is less time consuming and more robust than running geoscientific applications in an ad hoc fashion, resulting in more efficient use of HPC resources, more strategic code development, and enhanced data integrity and reproducibility.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 1
536 _ _ |a EoCoE - Energy oriented Centre of Excellence for computer applications (676629)
|0 G:(EU-Grant)676629
|c 676629
|f H2020-EINFRA-2015-1
|x 2
536 _ _ |a POP - Performance Optimisation and Productivity (676553)
|0 G:(EU-Grant)676553
|c 676553
|f H2020-EINFRA-2015-1
|x 3
536 _ _ |a Scalable Performance Analysis of Large-Scale Parallel Applications (jzam11_20091101)
|0 G:(DE-Juel1)jzam11_20091101
|c jzam11_20091101
|f Scalable Performance Analysis of Large-Scale Parallel Applications
|x 4
536 _ _ |a Water4Enery (jibg31_20160501)
|0 G:(DE-Juel1)jibg31_20160501
|c jibg31_20160501
|f Water4Enery
|x 5
536 _ _ |0 G:(DE-Juel-1)ATMLPP
|a ATMLPP - ATML Parallel Performance (ATMLPP)
|c ATMLPP
|x 6
536 _ _ |0 G:(DE-Juel-1)ATMLAO
|a ATMLAO - ATML Application Optimization and User Service Tools (ATMLAO)
|c ATMLAO
|x 7
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zhukov, Ilya
|0 P:(DE-Juel1)144419
|b 1
|u fzj
700 1 _ |a Geimer, Markus
|0 P:(DE-Juel1)132112
|b 2
|u fzj
700 1 _ |a Görgen, Klaus
|0 P:(DE-Juel1)156253
|b 3
700 1 _ |a Lührs, Sebastian
|0 P:(DE-Juel1)7757
|b 4
700 1 _ |a Breuer, Thomas
|0 P:(DE-Juel1)138707
|b 5
|u fzj
700 1 _ |a Naz, Bibi
|0 P:(DE-Juel1)169794
|b 6
700 1 _ |a Kulkarni, Ketan
|0 P:(DE-Juel1)168310
|b 7
|u fzj
700 1 _ |a Brdar, Slavko
|0 P:(DE-Juel1)172089
|b 8
700 1 _ |a Kollet, Stefan
|0 P:(DE-Juel1)151405
|b 9
|u fzj
773 _ _ |a 10.5194/gmd-11-2875-2018
|g Vol. 11, no. 7, p. 2875 - 2895
|0 PERI:(DE-600)2456725-5
|n 7
|p 2875 - 2895
|t Geoscientific model development
|v 11
|y 2018
|x 1991-9603
856 4 _ |u https://juser.fz-juelich.de/record/851425/files/invoice_Helmholtz-PUC-2018-38.pdf
856 4 _ |u https://juser.fz-juelich.de/record/851425/files/Sharples2018a.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/851425/files/invoice_Helmholtz-PUC-2018-38.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/851425/files/Sharples2018a.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/851425/files/Sharples2018a.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/851425/files/Sharples2018a.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/851425/files/Sharples2018a.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/851425/files/Sharples2018a.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:851425
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168536
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144419
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132112
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156253
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)7757
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)138707
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)169794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)168310
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)172089
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)151405
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOSCI MODEL DEV : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21