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Abstract. Geoscientific modeling is constantly evolving,
with next-generation geoscientific models and applications
placing large demands on high-performance computing
(HPC) resources. These demands are being met by new de-
velopments in HPC architectures, software libraries, and in-
frastructures. In addition to the challenge of new massively
parallel HPC systems, reproducibility of simulation and anal-
ysis results is of great concern. This is due to the fact that
next-generation geoscientific models are based on complex
model implementations and profiling, modeling, and data
processing workflows. Thus, in order to reduce both the du-
ration and the cost of code migration, aid in the development
of new models or model components, while ensuring repro-
ducibility and sustainability over the complete data life cycle,
an automated approach to profiling, porting, and provenance
tracking is necessary. We propose a run control framework
(RCF) integrated with a workflow engine as a best practice
approach to automate profiling, porting, provenance track-
ing, and simulation runs. Our RCF encompasses all stages
of the modeling chain: (1) preprocess input, (2) compilation
of code (including code instrumentation with performance
analysis tools), (3) simulation run, and (4) postprocessing
and analysis, to address these issues. Within this RCF, the
workflow engine is used to create and manage benchmark or
simulation parameter combinations and performs the docu-
mentation and data organization for reproducibility. In this
study, we outline this approach and highlight the subsequent
developments scheduled for implementation born out of the

extensive profiling of ParFlow. We show that in using our
run control framework, testing, benchmarking, profiling, and
running models is less time consuming and more robust than
running geoscientific applications in an ad hoc fashion, re-
sulting in more efficient use of HPC resources, more strate-
gic code development, and enhanced data integrity and re-
producibility.

1 Introduction

Geoscientific modeling is constantly evolving, leading to
higher demands on high-performance computing (HPC) re-
sources. We distinguish four main developments which in-
crease HPC demands: (i) higher spatial resolution, for which
the added value inherent to simulations at high spatial reso-
lutions has been shown, for example, in many studies of re-
gional convection permitting climate simulations (e.g., Prein
et al., 2015; Eyring et al., 2016; Heinzeller et al., 2016)
and continental hyper-resolution hydrological modeling ap-
proaches (e.g., Kollet and Maxwell, 2008; Maxwell et al.,
2015; Keune et al., 2013); (ii) increased model domain size,
for which models are now being run at larger scales, for
example, global-convection-permitting models (Schwitalla
et al., 2016), high-resolution continental regional climate
models (Leutwyler et al., 2016), and global hydrology and
land surface models, which are needed for water resources
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modeling (Bierkens et al., 2015); (iii) increased model com-
plexity in which the desire to explore the feedbacks among
the surface, subsurface, oceans, and atmosphere have led
to fully coupled multi-physics global or regional Earth sys-
tem models (ESMs) (e.g., Shrestha et al., 2014; Ruti et al.,
2016) posing load-balancing issues (Gasper et al., 2014); and
(iv) an increasing number of ensemble members in modeling
and data assimilation experiments, which means that several
instances of a model will need to run simultaneously (e.g.,
Han et al., 2016; Kurtz et al., 2016). These developments,
combined with long climate scenario simulation time spans
pose specific challenges in terms of computational resources,
data volume, data velocity, data handling, and analysis.

To keep up with these demands, HPC hardware, soft-
ware, and tools are developing at a rapid pace. For exam-
ple, heterogeneous HPC architectures that combine multi-
core CPUs with accelerators on the same compute node
(Brodtkorb et al., 2010) are considered a suitable architec-
ture for future exascale systems because of their energy
efficiency (i.e., flops per watt), low-latency data manage-
ment, and peak performance per accelerator (Davis et al.,
2012; Langdon et al., 2016; Kandalla et al., 2016). These
coprocessors have tens of cores and can host hundreds of
threads per chip, including their own memory with very high
bandwidth (Liu et al., 2012), and use different memory ar-
chitectures (e.g., cache coherence) or parallel programming
models (e.g., CUDA, OpenCL, OpenACC). Exascale per-
formance and high energy efficiency are also supported by
the use of reconfigurable devices into HPC systems such as
the field-programmable gate array (FPGA) integrated circuit
(Mavroidis et al., 2016). While these HPC developments are
instrumental towards next-generation exascale HPC systems,
during the next decade (Attig et al., 2011; Keyes, 2011; Davis
et al., 2012; Rigo et al., 2017), parallel simulation codes on
multi-core shared or distributed memory architectures need a
substantial amount of porting, profiling, tuning, and refactor-
ing (Hwu, 2014) to efficiently use such hardware, in particu-
lar because a very high level of vectorization is needed to take
advantage of the ever increasing number of execution units in
each core for single instruction, multiple data (SIMD) archi-
tectures. Moreover, offloading compute-intensive code sec-
tions to accelerators can also become a performance bottle-
neck due to excessive data transfers between host and accel-
erator. Thus, special care needs to be taken with respect to
data layout, placement, and reuse.

Therefore, in many cases, complicated legacy codes need
substantial investments in model porting, tuning, and refac-
toring, in order to efficiently use these upcoming and already
existing HPC architectures and achieve a high level of perfor-
mance. Invested effort has already paid off for many codes
(Meadows, 2012; Hammond et al., 2014; Leutwyler et al.,
2016; Heinzeller et al., 2016), in the form of significantly re-
duced runtimes, however, at a significant cost in resources.
For example in Leutwyler et al. (2016), porting COSMO to
graphics processing units (GPUs) brought reduced simula-
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tion times (speedup on the order of 3.6) but needed a team
of developers to bring this about. In order to reduce both the
duration and the cost of code migration, and also to aid in the
development of new models or model components, a system-
atic, rigorous approach is needed to fully analyze and under-
stand the runtime behavior and I/O characteristics in detail,
and identify performance bottlenecks. In this context, the use
of performance analysis tools is crucial. A run control frame-
work with integrated performance analysis tools can auto-
mate a performance engineering approach as well as gather
information from the resulting output and analyze that out-
put. However, depending on the current focus of the anal-
ysis, different tools and techniques may have to be used —
sometimes even in combination. For example, while various
tools provide generic information about the runtime behavior
of an application, specialized tools exist that focus on a par-
ticular aspect such as vectorization, threading, communica-
tion and synchronization, or I/O. Likewise, while profiling —
i.e., the process-local generation of aggregated performance
metrics during the execution — can provide a summarized
overview of the performance for the entire application run,
it is not able to capture the dynamic runtime behavior. Thus,
it can be complemented by using event tracing, which col-
lects performance-related events in chronological order and
therefore allows the reconstruction of the dynamic applica-
tion behavior in detail. However, care has to be taken when
using event tracing, as it is more expensive than profiling as
the number of data in the trace increases with the runtime of
the application (e.g., Geimer et al., 2010; Carns et al., 2011).
Thus, it is usually only applied to selected parts of the exe-
cution, for example, a few time steps or iterations of a solver,
that have been identified using more lightweight techniques
such as profiling.

In addition to making efficient use of massively parallel
HPC systems, reproducibility of simulation results, based on
complex model implementations, profiling, modeling, and
data processing workflows, must be a fundamental princi-
ple in computational research (Hutton et al., 2016). Recently,
Stodden et al. (2016) presented “Reproducibility Enhance-
ment Principles” (REP) to help ensure that the computational
steps in data processing and generation are similarly impor-
tant to access to the data themselves. Hence sharing not only
data but also details of software, workflows, and the compu-
tational environment via open repositories is likewise impor-
tant. Similarly, Hutton et al. (2016) recommend for compu-
tational hydrology that workflows, which combine data and
reusable code, are needed in order to ensure provenance of
scientific results. Given that in the weather and climate sci-
ences, data and primary code availability is often ensured,
ancillary code availability is addressed in Irving (2016) as
one of the root causes for irreproducibility. With this in mind,
we consider the aspect of documenting the porting and per-
formance optimization steps as well as provenance tracking
during production simulations as highly relevant to ensure
reproducibility. Workflow engines such as ecFlow (Bahra,
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2011) or cylc (Oliver et al., 2017) can connect all relevant
steps of a modeling chain, submit jobs with dependencies,
and help with necessary parameter sweeps for application
software porting and tuning alike. At the same time they al-
low for extensive, systematic logging of the processing steps
themselves as well as the log outputs from the individual ap-
plications.

In this article, we present a run control framework (RCF)
as a best practice approach to porting, profiling, and doc-
umenting legacy code using the script-based benchmarking
framework JUBE (Liihrs et al., 2016) as a workflow engine.
The framework can be described as the supporting structure
to build the geoscience application workflows, whereas the
workflow engine is the tool used to automate the workflows.
We developed profiling, run control, and testing frameworks
which are dynamically built with user input into interdepen-
dent tasks and these tasks are run using JUBE. While the use
case for this portable run control, profiling, and testing work-
flow engine system discussed in this paper is the software
application ParFlow, an integrated parallel watershed model
run on machines at Jiilich Supercomputing Center (JSC), the
RCF is generic and can be applied to any other simulation
software or any other HPC platform. In the remainder of
this paper we outline this approach and highlight the subse-
quent developments scheduled for implementation born out
of the extensive profiling of ParFlow. Additionally, we high-
light other uses for employing a workflow engine which have
enabled us to streamline the run control process for model
runs.

2 RCEF approach to profiling, portability, and
provenance tracking

In this section, the RCF which could be described as a run
harness, along with JUBE is introduced, where a harness in
this case is used to describe the framework of scripts and
other supporting tools that are required to execute a work-
flow. The RCF is presented as a means to facilitate portabil-
ity, profiling, and provenance tracking. This is followed by
the description of the standard profiling toolset, which is cur-
rently built into our RCF to aid in the ParFlow hydrological
model development and for production simulation run con-
trol as well as the hardware characteristics and the profiling
tools available on the supercomputer used in this study. The
RCF for the case study in this paper is given in the Supple-
ment as a tar ball file.

2.1 JUBE as a workflow engine

Benchmarking scientific code can assess impacts of changes
of the underlying HPC software stack (e.g., compiler or li-
brary upgrades) and hardware (e.g., interconnect upgrades),
aid in testing as part of software engineering and code refac-
toring, and aid in finding optimum numerical model config-
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urations. Benchmarking a numerical model system usually
involves several runs with different configurations (compiler,
domain, physics parameterizations, solver settings, load bal-
ancing), including compilation, instrumentation (i.e., the in-
jection of special monitoring “hooks” into the program to
enable profiling and/or event tracing), various simulations,
profiling, result verification, and analysis. However, with in-
creasing model and HPC environment complexity, the pa-
rameter space for benchmarking can be large. To avoid errors
in managing benchmark parameter combinations, to reduce
the overall temporal effort, and to ensure reproducibility and
comparability, benchmarking must be automated. This task
can be accomplished using a workflow engine, which is an
application for workflow automation, like the JUBE bench-
marking environment (Liihrs et al., 2016).

JUBE is a script-based framework designed to effi-
ciently and systematically define, set up, run, and analyze
benchmarks and production simulations. The current JUBE
v2.1.4 is a Python-based implementation released under
GNU GPLv3 actively developed at the JSC (https://www.
fz-juelich.de/ias/jsc/EN). JUBE allows one to easily define
benchmark sets via an XML configuration file, in which the
workflow and parameter sweeps are specified. When run,
JUBE controls the automatic execution of the designed work-
flow and takes care of the underlying file structure to al-
low an individual execution per run. Automatic bookkeep-
ing separates the different runs and parameter combinations
and allows reproducible executions. To generate an overview
of the overall workflow execution, the user can configure
JUBE how to analyze the different output files to extract in-
formation such as the overall runtime or other application-
specific data. This allows the system to create a combined
overview of the underlying parameterization and the appli-
cation outputs. The features above combined with our de-
scribed RCF means that users can very quickly get their com-
plicated model workflows up and running without resorting
to developing their own specialized bash or Python scripts,
which are usually bereft of the features contained in our RCF,
to run simulations.

Other workflow engines which are commonly used are
ecFlow and cylc. JUBE, ecFlow, and cylc are all written in
Python and all have tasks/steps which can be triggered based
on dependencies (e.g., a run task would only run on success-
ful compilation) and have variable inheritance in which gen-
eral variable definitions can be overwritten with specific pa-
rameters at runtime. We have chosen to use JUBE as it has
been designed to be run on JSC machines and we have large
compute projects there; we have direct access to the JUBE
developers, and there is a soon-to-be-released version, which
can directly interact with the specialized JSC job scheduler
at any point in the production run (and can therefore circum-
vent the 2 h time limitation for a running process on JSC ma-
chines). Additionally, we can influence the development of
added functionality such as built-in Python scripting for vari-
able declaration, parameter space creation, environment han-
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dling, loading files, and substitution. If in the future, ecFlow
and cylc prove advantageous to use over JUBE, we could set
them up on a continuously running server and tunnel in. Cur-
rently JUBE, ecFlow, and cylc workflow engines can interact
with a job scheduler and are designed with the purpose of
facilitating the automation of workflows. One major benefit
of using cylc and ecFlow over JUBE is that they both have a
graphical user interface (GUI), which can be very powerful
for non-developers. In the case that we could run either cylc
or ecFlow continuously on JSC machines as we can JUBE, it
would be hard to pick one over the other. Both appear to have
the same features and functionality. However as both JUBE
and ecFlow can read in XML scripts as input, we would lean
towards using ecFlow in the future as it would be easy to
swap between the two as we have set up our RCF in XML,
while we would need to refactor our RCF for cylc (Bahra,
2011; Oliver et al., 2017). In addition, cylc has been reported
to be more complicated when it comes to building workflows
(Manubens-Gil et al., 2016).

2.2 RCF description

Whatever workflow engine one decides to use, someone still
needs to integrate the workflows or tasks themselves — JUBE,
ecFlow, and cylc are simply tools for workflow automa-
tion. Leveraging the generic JUBE framework, we developed
a run control framework, suitable for a typical geoscience
model, from a series of XML files integrated with Python
scripts to be executed with JUBE (see Fig. 1). These jobs are
usually run with the following modeling chain: (1) prepro-
cess input, (2) compilation of code (includes code instrumen-
tation with profiling tools), (3) simulation run, and (4) post-
processing and analysis. This modeling chain can be thought
of as interdependent tasks set up by the RCF, which are then
submitted as steps by JUBE. The current run control frame-
work is under version control and can be cloned from GitLab
(Hethey, 2013).

The directory structure for the RCF run harness used in the
case study in this paper is shown in Fig. 2. A top-level Python
script, jubeRun.py, combines the custom job specifi-
cations (custom/weakScalingSinusoidal_Job_
Juqueen.xml) with the run control benchmark XML
script (driver/ParFlowRC_Benchmark.xml) into
one XML configuration file execute.xml, which
can be parsed through JUBE, and then calls the JUBE
run command with the newly created file as an ar-
gument. Machine-specific profiling and job submis-
sion parameter sets are imported from XML structs
given in the scripts templates/platform.xml
and templates/profiler.xml, respec-
tively, and the ParFlow model input parame-
ter sets are imported from the structs given in
templates/ParFlow_model_input.xml, based
on the options specified in the custom job. All environ-
ment and submission scripts are stored in directories
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${machine}_files, all the profiling specific wrappers
and filter files are stored in the directory profiler_data,
and all ParFlow model input is stored in the directory mode 1
(see Fig. 2).

The driver script contains the steps to run the modeling
chain, where the steps themselves can be dependent on the
successful completion of the previous step(s). Compilation
parameters are set based on which HPC platform or machine
the benchmark suite is run on and the profiling tool(s) cho-
sen. The user can specify the machine, the profiling tool(s),
the ParFlow model, the domain size, and the scaling param-
eters, and they can overwrite the default compilation and job
submission parameters via a custom job XML script. The
user can also describe an analysis step for the postprocess-
ing of output.

The template scripts are used in our run harness to
capture default settings for HPC platform- and model-
related parameters. Specific default settings can be over-
written when specified in the custom job XML script.
In the case study, the template scripts used contain
HPC platform-related default settings for profiling tools
(profiler.xml), compilers (plat form.xml), and job
submission (juqueen_files) (see Fig. 2). In addition
there are templates for each type of ParFlow model, for
which the idealized overland flow model (see Sect. 3.1) and
the type of scaling typically used for a benchmark suite, i.e.,
weak scaling and strong scaling, is defined. The template
ParFlow model XML script sets the default settings for a se-
ries of ParFlow models set up over different domains. The
template scaling XML script sets the default domain settings
for a given ParFlow model. The scaling parameters can be
set such that either one subdomain is spawned per thread
(weak scaling) or such that the domain size does not change
(strong scaling). The custom XML script sets the HPC plat-
form used, the profiling tool, the ParFlow model type, the
domain extent and type of scaling, and the postprocessing
analysis step. The custom job script can also overwrite de-
fault settings such as compiler settings and job submission
settings.

Our RCEF creates benchmark or production model simula-
tion suites, which can run on multiple computer systems and
whose results can be postprocessed and analyzed, via the ex-
ecution of the driver file using JUBE, in which the driver
file ingests custom and template input. All parameters which
are comma separated are parsed by JUBE as a parameter
sweep, so that each comma-separated variable is iterated over
to become a separate run. At the time of writing, our RCF
is running on several different machines, namely JUQUEEN
(a highly scalable cluster at JSC), JULIA (a prototype KNL
cluster at JSC), JURECA (a general purpose cluster at JSC),
and JUROPA3 (a prototype test bed system at JSC). All files
mentioned in Fig. 2 are available in the tar ball supplied in
the Supplement for this paper.
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Run simulation Postprocess raw output

Preprocess Environment » Compilation Simulation Postprocess
input step preparation step step run step & analysis step
platform.xml custom_parameters.xml postprocess.xml

preprocess.xml ${machine}_env.ini

profiler.xml
compilation_script.sh

ParFlow_model_input.xml
submit_script.job

profiling_analysis.py
raw_result_postprocess.py

Figure 1. Schematic overview of the modeling chain as supported by our JUBE-based run harness. Each step is annotated with a brief
description (at the top) as well as the respective RCF infrastructure (XML files and scripts, at the bottom).

jubeRun.py

Driver

Templates

platform.xml \

ParFlowRC_ weakScaling ParFlow_model profiler.xml scaling.xml
Benchmark.xml Sinusoidal_Job _input.xml
_Juqueen.xml
\ Model \juqueen_files \profiler_data
ParFloy

F::;:F"W environment file| Score?

‘ i for juqueen compilation

mode el et parFiow e
P! installation Jugueen

file for juqueen ScoreP filter file

Figure 2. Directory structure of the run control framework used in the case study (Sect. 3).

2.3 RCF: aiding code portability

Within the RCF, we have separated all the information
pertinent to the existing compilers, required environment
modules, and workload manager job submission specifics
for a given system into a single XML file (see Fig. 1,
platform.xml). This platform.xml file can eas-
ily be extended to include any new system. When com-
pilers, environment modules, and workload managers are
updated or new features or functionality are added, the
platform.xml can be easily altered to include these up-
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dates. For example, as new C and Fortran compiler versions
are released with improved code generation and potentially
new optimization flags, it is useful to reassess which compi-
lation flags give the best runtime without compromising the
accuracy of the result. In the case of our RCEF, this is as simple
as altering the compiler flags parameter in plat form.xml
with comma-separated values for each different compiler
flag, which produces a benchmark suite. In order to ensure
accuracy is not compromised, we built in a result compari-
son test, in which the user can compare the result with previ-
ously generated output. However, some thought needs to be
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taken in setting up the test as ultimately it is up to the user
to decide which models and previously generated output is
accurate enough to be the gold standard to test against. If
the user is uncomfortable in using their own models for this
test, most geoscience applications (ParFlow included) have a
plethora of tests with previously generated output to use as a
gold standard to test against.

2.4 RCF: facilitating code profiling

In order to analyze ParFlow’s runtime behavior, determine
optimal runtime settings, and identify performance bottle-
necks during model development, we use several com-
plementary performance analysis tools. Setup, compilation
wrappers, and analysis profiling steps were built into our
RCF (Fig. 1: profiler.xml, Appendix A) with support
for the following tools: Score-P v3.1 (Kniipfer et al., 2012)
and Scalasca v2.3.1 (Geimer et al., 2010; Zhukov et al.,
2015), where results collected with Score-P and Scalasca can
be examined using the interactive analysis report explorer
Cube v4.3.5 (Saviankou et al., 2015), Allinea Performance
Reports v7.0.4 (January et al., 2015), Extrae v3.4.3 (Alonso
et al., 2012), Paraver v4.6.3 (Labarta et al., 2006), Intel Ad-
visor 2015 (Rane et al., 2015), and Darshan v3.0.0 (Carns
etal., 2011) (see Table Al in Appendix A for a more detailed
description of each performance analysis tool listed above).
The modeling chain for the profiling workflow is as follows:

1. prepare the input data;

2. load environment modules and set up parameters spe-
cific to the performance analysis tool;

3. compile or link ParFlow using scripts and wrappers, de-
pending on what is required by the profiling tool; e.g.,
Score-P requires compilation and linking using wrap-
pers, whereas Darshan requires only linking after com-
pilation;

4. ParFlow execution with the necessary tool flags (e.g.,
Scalasca has various runtime measurement, collection,
and analysis flags which can be turned on or off);

5. parse and analyze the results interactively (e.g., using
interactive visual explorers like Paraver, Cube) or gen-
erate a textual performance metric report via a postpro-
cessing step.

Note that code instrumentation with performance analy-
sis tools — that is, the insertion of tool-specific measurement
calls, which are executed at relevant points (events) during
runtime, into the application code — can introduce significant
overhead, which can be assessed by comparing to an unin-
strumented reference run. If the runtime of the instrumented
version of the code under inspection is much longer than
the reference run (more than 10-15 %), it is recommended
to reduce instrumentation overhead as the measurement may
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no longer reflect the actual runtime behavior of the appli-
cation. Typical measures to reduce the runtime overhead in-
clude turning off automatic compiler instrumentation, filter-
ing out short but frequently called functions, and applying
manual instrumentation using specific application program-
ming interfaces (APIs) provided by the tools.

Health check protocol

A typical workflow when performing an initial “health ex-
amination” on a scientific code can be described as follows.

1. “Which function(s) or code region(s) in my program
consume(s) the most wall clock time?” This question
can usually be answered using a flat profile, which
breaks down the application code into separate func-
tions or manually annotated source code regions (e.g.,
initialization vs. solver phase) and aggregates the wall
clock time spent in each function or region. This ascer-
tains the area(s) of interest in order to streamline perfor-
mance analysis efforts.

Typical diagnosis tools include Allinea Performance
Reports, Score-P + Cube, and Extrae + Paraver.

2. “Does my application scale as expected?” Typically all
scientific applications aim to perform well at scale. To
address this question, profiles need to be collected with
varying numbers of processes, and the scalability of
functions and code regions within the areas of interest
need to be examined.

There are two types of scaling: strong and weak scaling.
In the case of strong scaling, the overall problem size
(workload) stays fixed but the number of processes in-
creases. Here, the runtime is expected to decrease with
increasing number of processes. By contrast, in the case
of weak scaling, the workload assigned to each process
remains constant with an increase in processors and,
thus, the runtime is ideally expected to be constant as
well.

The strong scaling efficiency, Eg, is computed as a re-
lation of speedup to the number of processes. Speedup
is computed as a relation of the amount of time to com-
plete a work unit with one process to the amount of time
to complete N of the same work units with N processes:

T;
Eg=——, (1)
NTn

where T is the time taken to complete a work unit with
one process and Ty is the time taken to complete a work
unit with N processes.

The weak scaling efficiency, E\ys, is computed as a rela-
tion of the amount of time to complete a work unit with
one process to the amount of time to complete N of the
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same work units with N processes:

Ews = T @)

Eg and E g are very common metrics in HPC to quan-
tify and qualify the scalability of the application. These
metrics indicate how efficient an application is when us-
ing increasing numbers of processes.

Typical diagnosis tools include Allinea Performance
Reports, Score-P + Cube, and Extrae + Paraver.

. “Does my program suffer from load imbalance?” If this
is the case, some processes will perform significantly
more or less work than the others. Load balance is an
indication of how well the load is distributed across pro-
cessors. If a code is not well balanced, HPC resources
will be used inefficiently as imbalances usually materi-
alize as wait states in communication—synchronization
operations among processes and threads. Thus, this may
be an area on which to concentrate code refactoring ef-
forts.

To characterize load imbalance Rosas et al. (2014) in-
vented the load balance efficiency metric, Eyp, which is
defined as a relation between average computation, T,
and maximal computation time, Tmax:

T

Ep = 3

Tm ax

Note that load imbalance can either be static or dy-
namic. While the former can usually be easily identi-
fied in profiles, pinpointing the latter may require more
heavyweight measurement and analysis techniques such
as event tracing, as imbalances may cancel each other
out in aggregated profile data.

Typical diagnosis tools include Score-P + Cube, Score-
P + Scalasca + Cube, and Extrae + Paraver.

. “Is there a disproportionate time spent in communica-
tion or synchronization?”” Communication and synchro-
nization overheads can be caused by network latencies
(e.g., due to an inefficient process placement onto the
compute resources) or wait states and other inefficiency
patterns (e.g., caused by load or communication imbal-
ances). If these overheads increase significantly with an
increase in resources, this can be a further barrier to
scalability.

To quantify and qualify disproportionate time spent in
communication or synchronization, Rosas et al. (2014)
developed the communication efficiency metric, Ecom,
which is defined as a relation between Ty, and total
execution time, Tiot:

Tmax . ( 4)
Ttot

Ecom =
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Typical diagnosis tools include Allinea Performance
Reports, Score-P + Scalasca + Cube, and Extrae + Par-
aver.

. “Is my parallelization strategy efficient?” To answer this

question, Rosas et al. (2014) developed an auxiliary ef-
ficiency metric, parallel efficiency, which quantifies and
qualifies the parallelization strategy as a whole.

Parallel efficiency is computed as the product of the
previously defined metrics load balance efficiency (step
no. 3) and communication efficiency (step no. 4):

Epar = EpEcom = (@)

T
Tt
where a minor value reduction of any component will
result in a significant reduction of parallel efficiency.

Efficiency values range from zero to 1, where a value of
1 is the most efficient. Using Cube’s derived metric fea-
ture (Zhukov et al., 2015), we can derive these efficiency
metrics from the Score-P profile data automatically.

. “Is my application limited by resource bounds?”” There

are several bounds one can reach, such as

(a) CPU bound; i.e., the rate at which processes operate
is limited by the speed of the CPU. For example, a
tight loop that can be vectorized and operates only
on a few values held in CPU registers is likely to be
CPU bound.

(b) cache bound; i.e., the simulation is limited by the
amount and the speed of the cache available. For
example, a kernel operating on more data than can
be held in registers but which fits into the cache is
likely to be cache bound.

(c) memory bound; i.e., the simulation is limited by the
amount of memory available and/or the memory ac-
cess bandwidth. For example, a kernel operating on
more data than fit into the cache is likely to be mem-
ory bound.

(d) /O bound; i.e., the simulation is limited by the
speed of the I/O subsystem. For example, count-
ing the number of lines in a file is likely to be I/O
bound.

Typical diagnosis tools include Score-P + PAPI + Cube,
Extrae + Paraver, Intel Advisor, and Darshan.

. There are additional questions one can add to the survey,

for example, “how many pipeline stalls, cache misses,
and mis-predicted branches are occurring?”’, “how can
we assess serial performance?”, etc.

To describe serial performance, for example, we use the
instructions per cycle metric (IPC), i.e., the ratio of total
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instructions executed to the total number of CPU cy-
cles. Potential reasons for low IPC values are pipeline
stalls, cache misses, and mis-predicted branches (John
and Rubio, 2008). Therefore, additional measurements
with hardware counters should be made to determine the
number of cache misses in L1, stalls, and mis-predicted
branches when a low IPC value is computed.

Typical diagnosis tools include Score-P + PAPI + Cube,
Extrae + Paraver, Intel Advisor, Darshan, etc.

As can be seen, different tools can be used to an-
swer the various questions mentioned above. However, they
usually employ different measurement and analysis tech-
niques, which may prohibit the use of a particular tool un-
der certain circumstances. For example, the combination
Extrae + Paraver uses event tracing in conjunction with a
manual—visual analysis, which is only applicable to selected
parts of the execution (i.e., the current region of interest). In
contrast, Score-P profiling + Cube uses a more lightweight
measurement technique that can handle arbitrarily long exe-
cutions but requires a second measurement if there is a need
for a focused in-depth analysis based on event tracing. More-
over, the level of detail provided by the various tools usually
differs. For example, Allinea Performance Reports can pro-
vide a very coarsely grained initial performance overview.
Such an overview can be sufficient to already rule out certain
classes of performance issues but does not provide enough
detail to track down the root causes of the issues being iden-
tified. Thus, it can only give an indication on which more
in-depth analysis to carry out in the next step(s). Also, not all
performance analysis tools are available on every platform.
For example, Allinea Performance Reports and Intel Advisor
are only available on x86 architectures, but not for the IBM
Blue Gene/Q platform used in this case study. Finally, if two
tools provide comparable functionality, users are inclined to
use the tool(s) they feel most comfortable with. Thus, our
RCF implements support for all of the diagnosis tools men-
tioned in the section above (see Appendix A for more de-
tails), covering many different use cases and preferences.

In this case study, we followed the health check using the
diagnosis tools (co)developed by JSC and available on the
JUQUEEN platform, namely (1) Score-P profile measure-
ments, including hardware performance counters collected
via PAPI (Moore et al., 2003), (2) Score-P trace measure-
ments followed by a subsequent automatic Scalasca trace
analysis, and (3) manual analysis of measurements from the
abovementioned steps with an interactive visual browser, i.e.,
Cube. Where Score-P is a community-maintained scalable
instrumentation and performance measurement infrastruc-
ture for parallel codes that can collect both profiles and event
traces, Scalasca Trace Tools are a collection of scalable trace-
based tools for in-depth analyses of concurrent behavior, and
Cube is an interactive analysis report explorer for Score-P
profiles and Scalasca trace analysis reports. Additionally we
used Darshan, a tool to capture and characterize the I/O be-
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result:
time(s] | 4
time_io[s] | 0.1
time _mpi[s] | 0.7
mem_vs_cmp | 1.0
load_imbalance[%] | 9.0
io_volume[MB] | 183.1
io_calls | 0
io_throughput[MB/s] | 1624.4
avg_io_ac_size[kB] | 0.0
num_p2p_calls | 14128
p2p_comm_time[s] | 0.4
p2p_message_size[kB] | 8.1
num_coll calls | 1008
coll _comm_time[s] | 0.2
coll _message_size[kB] | 0.4
delay mpi[s] | 0.4
delay mpi_ratio[%] | 59.3
time_omp[s] |
omp_ratio[%] | nan
delay_omp[s] |
delay_omp_ratio[%] | nan
memory_footprint | 92228kB
cache_usage_intensity | 0.65
IPC | 1.53
time_no_vec([s] | 5
vec_eff | 1.25
time no_fma[s] | 4
fma_eff | 1.00

Figure 3. Example output from a performance metric extraction
workflow. See Appendix B for a complete explanation of these per-
formance metrics and why they might be useful.

havior of an application, for I/O profiling. Both Score-P and
Scalasca output their results in CUBE4 format, which can
be processed by the Cube GUI and command-line tools. The
latter are used by the RCF to process the result files and to
collate specific information from each run in tabular format.

In order to track the health of ParFlow with each new re-
lease, we developed an automated performance metric ex-
traction workflow and integrated this into our RCF to obtain
key performance indicators such as MPI wait time, mem-
ory footprint, cache intensity, etc. in order to quickly as-
sess whether new developments or additions to the code im-
prove or degrade the overall performance. An example of
such a workflow output is given in Fig. 3. Metrics shown
in Fig. 3 not only describe the application in general but also
assess potential bottlenecks, i.e., I/O, communication, node
and core performance, and memory usage (see Appendix B
for more details).

2.5 RCF: provenance tracking

JUBE has many provenance tracking features and tools.
JUBE automatically stores the benchmark suite data for each
workflow execution, which can be parsed by JUBE’s anal-
ysis tools. Workflow metadata are automatically parsed by
JUBE and then compiled into a report detailing the run and
which settings were used for each suite. Subsequent analy-
sis procedures can be predefined, added, or altered by the
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user after the experiment to automate data processing. These
features and tools are designed to facilitate documentation
and archiving. Additionally, JUBE’s workflow execution di-
rectory structure allows for runtime provenance tracking.
JUBE’s workflow management system automatically creates
a suite of the parameter sets and steps for each workflow.
JUBE then creates a unique execution unit or work package
for a specific step and parameter combination. Each work-
flow execution has its own directory named by a unique nu-
meric identifier, which is incremented for subsequent runs.
Inside this directory, JUBE handles the workflow execution’s
metadata and creates a directory for each separate work pack-
age. This avoids interference among different work pack-
age runs and creates a reproducible structure. For dependent
work packages, symbolic links are created to the parent work
package, for user access.

We added extra provenance tracking features to ParFlow
simulation runs such as configuration management (e.g. log-
ging of time spent in important routines, performance track-
ing) and postprocessing of output to a standardized format
enriched with metadata. The postprocessing of output en-
tails converting unannotated ParFlow binary file model sim-
ulation output to a more portable NetCDF output contain-
ing standardized metadata enrichment using CMOR and CF
standards (Eaton et al., 2009; Nadeau et al., 2017) and incor-
poration of all ParFlow model settings. The CF conventions
for climate and forecast metadata are designed to promote
the processing and sharing of files created in NetCDF format.
The conventions define metadata that provide a definitive de-
scription of what the data in each variable represent, and of
the spatial and temporal properties of the data. Use of the
convention ensures that users of data from different sources
can properly compare quantities, along with facilitating inter-
operability and portability. Interoperability in this case means
that CMORized NetCDF files can be used on different ar-
chitectures (big or little endian) and for different software
(for use in various terrestrial systems software and visualiza-
tion software). The data conversion postprocessing step was
developed in accordance with state-of-the-art data life cycle
management and to maintain interoperability (Stodden et al.,
2016).

In addition, the postprocessing and analysis step we de-
veloped contains an archive process at the end of the model-
ing chain, which documents and collates the environmental
variables, model input, model simulation scripts, model sub-
mission scripts, log files, postprocessed output, and applica-
tion code in such a fashion that the archived output can be
downloaded and rerun following the instructions in the sim-
ulation documentation, without need for any additional input,
a practice recommended by Hutton et al. (2016). That is, if a
user were to untar an output directory they would be able to
compile and rerun the simulation, using the XML configura-
tion file with JUBE, on the same machine, without having to
obtain information elsewhere. The information contained in
the tarred directory would also almost cover points 1-4 from
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Irving (2016) — an option for the user to reproduce published
figures from the postprocessed NetCDF output files produced
is not yet built-in. However ensuring the science remains the
same on different HPC architectures needs to be considered
when porting models. The developers of the software need
to employ strategies such as continuous integration on mul-
tiple machines to ensure consistency of science across archi-
tectures and compilers. Our RCF could also be adapted to
facilitate these strategies.

3 Case study: RCF profiling workflow

In this section, we present the experimental design of the test
case, to be used in the profiling study, steps we took in port-
ing the test case, and results of the profiling study, which
demonstrate the usefulness of our RCF. For this study we use
the highly scalable IBM Blue Gene/Q system JUQUEEN.
JUQUEEN features a total of 458752 cores from 1024
PowerPC A2 16-core four-way simultaneous multithreading
CPUs in each of the 28 racks and a total of 448 TB main
memory with a LINPACK performance of 5.0 petaflops.
ParFlow runs under Linux microkernels on compute nodes
using IBM XL compilers and a proprietary MPI library and
IBM’s General Parallel File System (GPFS). All profiling re-
sults shown in this paper are the result of running the bench-
mark described in Sect. 3.1 10 times to obtain an average and
make sure the benchmark is running as it should, taking no-
tice of the variance among results. See the tar ball supplied
in the Supplement for this paper for the complete RCF used
for this case study.

3.1 Case study: experimental design

In order to demonstrate the applicability of the RCEF, a
weak scaling demonstration study with an idealized over-
land flow test case was set up for ParFlow (Maxwell et al.,
2015). ParFlow (v3.2, https://github.com/parflow) is a mas-
sively parallel, physics-based integrated watershed model,
which simulates fully coupled, dynamic 2-D and 3-D hy-
drological, groundwater, and land-surface processes suitable
for large-scale problems. ParFlow is used extensively in re-
search on the water cycle in idealized and real data setups
as part of process studies, forecasts, data assimilation ex-
periments, hindcasts, and regional climate change studies
from the plot scale to the continent, ranging from days to
years. Saturated and variably saturated subsurface flow in
heterogeneous porous media are simulated in three spatial
dimensions using a Newton—Krylov nonlinear solver (Ashby
and Falgout, 1996; Jones and Woodward, 2001; Maxwell,
2013) and multigrid preconditioners, for which the three-
dimensional Richards equation is discretized based on cell-
centered finite differences. ParFlow also features coupled
surface—subsurface flow, which allows for hillslope runoff
and channel routing (Kollet and Maxwell, 2006). Because
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it is fully coupled to the Common Land Model (CLM), a
land surface model, ParFlow can incorporate exchange pro-
cesses at the land surface including the effects of vegeta-
tion (Maxwell and Miller, 2005; Kollet and Maxwell, 2008).
Other features include a parallel data assimilation scheme us-
ing the Parallel Data Assimilation Framework (PDAF) from
Nerger and Hiller (2013), with an ensemble Kalman filter,
allowing observations to be ingested into the model to im-
prove forecasts (Kurtz et al., 2016). An octree space par-
titioning algorithm is used to depict complex structures in
three-dimensional space, such as topography, different hy-
drologic facies, and watershed boundaries. ParFlow parallel
I/O is via task-local and shared files in a binary format for
each time step. ParFlow is also part of fully coupled model
systems such as the Terrestrial Systems Modeling Platform
(TerrSysMP) (Shrestha et al., 2014) or PEWRF (Maxwell
et al., 2011), which can reproduce the water cycle from deep
aquifers into the atmosphere.

A three-dimensional sinusoidal topography as shown in
Fig. 4 was used as the computational domain with a lat-
eral spatial discretization of Ax = Ay =1m and a verti-
cal grid spacing of Az =0.5m; the grid size, n, was set to
nx =ny = 50 and nz = 40, resulting in 100000 unknowns
per CPU core, with one MPI task per core. In order to sim-
ulate surface runoff from the high to the low topographic re-
gions with subsequent water pooling and infiltration, a con-
stant precipitation flux of 10mmh~! was applied. This re-
sults in realistic nonlinear physical processes and thus com-
pute times. The water table was implemented as a constant
head boundary condition at the bottom of the domain with
an unsaturated zone above, 10 m below the land surface. The
heterogeneous subsurface was simulated as a spatially uncor-
related, log-transformed Gaussian random field of the satu-
rated hydraulic conductivity with a variance ranging over 1
order of magnitude. The soil porosity and permeability were
set to 0.25mday~!. This idealized setup was used for the
profiling case study as opposed to a real-world setup due to
the symmetry inherent in the setup. In contrast, a real-world
experiment has asymmetry in both the meteorological forc-
ing and also the model topography, which naturally lead to
load imbalances. These asymmetries could therefore obscure
whether there are actually load imbalances due to poor soft-
ware design.

The weak scaling experiment is defined as how the solu-
tion time varies with the number of processors for a fixed
problem size of 100000 degrees of freedom per processor.
The horizontal (nx,ny) grid size is increased but the num-
ber of cells in the vertical direction, nz, remain constant. All
model configurations were run for 10 h with a time step size
of At =0.5h.

3.2 Porting ParFlow to JUQUEEN

When porting ParFlow onto JUQUEEN, we used the IBM
XL C compiler available on the platform (v12.1), which pro-
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Figure 4. Model setup, showing cross-sectional domain and sinu-
soidal topography variation from the top of the model (z = 20) for
each processor.

vides several compiler options that can help control the opti-
mization and performance of C programs. We focused on two
aspects of optimization, namely, loop optimization (-ghot)
and general optimization levels: —O1 to —03, where these
optimizations range from local basic block to whole-program
analysis. The higher the optimization level, the more sophis-
ticated optimization techniques are that are applied. For ex-
ample, using optimization level —~O1 performs only quick lo-
cal optimizations such as constant folding and elimination
of local common subexpressions, whereas optimization level
—-03 performs rewrites of floating point expressions, aggres-
sive code motion, scheduling on computations, and loop opti-
mizations, and additionally the compiler replaces any calls in
the source code to standard math library functions with calls
to the equivalent MASS library functions. The focus on these
two aspects was a result of following the user guidelines set
out by IBM in using the XL C compiler (IBM, 2012).

We set up the accuracy test described in Sect. 2.3 with the
gold standard output to test against obtaining results previ-
ously generated with the model described in Sect. 3.1. The
gold standard output was verified via inbuilt water balance
and energy balance tests using ParFlow pftools (a package
of utilities and a Tcl library that is used to set up and post-
process ParFlow binary files). Accuracy was determined to
be met when the output generated did not vary with the gold
standard to six significant figures.

We found the optimal commonly used compilation flag,
which did not compromise accuracy with the IBM XL
C compiler for ParFlow to be -03 —-ghot —-garch=gp
—gtune=qgp, where the architecture and tuning flag was
set to be gp, which indicates the specific architecture of
JUQUEEN (see Table 1). Using the —~03 compilation flag re-
sulted in a speedup of close to a factor of 2 when running with
16 MPI tasks on 16 CPU cores (one compute node on Blue
Gene/Q, no multithreading). The timing results were com-
piled using JUBE’s result parser functionality, which was run
as a postprocessing step. This is in agreement with the re-
sults in running the fully coupled TerrSysMP model system
on JUQUEEN in Gasper et al. (2014).
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Table 1. Time taken to run the ParFlow test case on JUQUEEN
(IBM Blue Gene/Q) with 16 MPI processes using three different
commonly used compiler flag optimizations.

IBM XL compiler flags Time (s)

-01 —-ghot —-garch=gp —-gtune=gp 203
-02 —-ghot —-garch=gp —-gtune=gp 203
-03 —-ghot —-garch=gp -gtune=gp 110

3.3 Profiling results and analysis

The following section describes the results from the demon-
stration scaling study, following the code performance health
check protocol given in Sect. 2.4.

3.3.1 Analysis of time spent in ParFlow functions:
health check step no. 1

As a first step, a breakdown of the time spent in each anno-
tated region of ParFlow was obtained via internal timings in
ParFlow and a Score-P profile measurement, visualized as a
bar chart in Fig. 5. From the breakdown it is clear that the
core component of ParFlow is the computation of the solu-
tion to a system of nonlinear equations, reflected in Fig. 5,
where most of the wall clock time is spent in the blue re-
gions which make up the time spent obtaining a solution via
anonlinear solving step. A large part of the nonlinear solver’s
workflow can be summarized in two steps, which are as fol-
lows: the initialization of the problem for the specific input
and the actual solver loop. The last two steps reside in the
KINSol routine, which is a component of the SUNDIALS
solver library (Hindmarsh et al., 2005). Therefore, the non-
linear solving routine and its components are the focus of
interest for reducing ParFlow’s runtime. The nonlinear solv-
ing loop performs the computational process of computing an
approximate linear solution (KINSpgmrSolve), where the
intermediate solution is updated every iteration until the de-
sired convergence or tolerance is reached. Those two afore-
mentioned steps within the nonlinear solve loop are manu-
ally annotated in the source code and we will focus on these
for our results. For simplicity, we have shortened these two
steps to setup_solver and solver_loop respectively
and will refer to them by this nomenclature henceforth.

3.3.2 Scalability: health check step no. 2

Our scalability analysis of ParFlow is again based on the
Score-P profile measurement. Figure 6 shows a plot of
the execution time versus the number of MPI processes
when running the weak scaling experiment as outlined
in Sect. 3.1, broken down into the two regions of in-
terest: setup_solver and solver_loop. The behav-
ior of both regions shows an increase in execution time
with an increase in the number of processes, though the
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Table 2. Weak scaling efficiency, load balance efficiency, commu-
nication efficiency, and parallel efficiency, running the weak scaling
experiment up to 32 768 MPI processes.

No. of MPI Weak Load Communication Parallel
processes scaling balance efficiency efficiency

efficiency efficiency (%)

1024 1.0 0.96 0.97 0.93

2048 0.84 0.97 0.97 0.94

4096 0.84 0.97 0.82 0.80

8192 0.55 0.98 0.75 0.73
16384 0.50 0.98 0.69 0.67
32768 0.21 0.98 0.64 0.63

setup_solver region shows better performance in com-
parison to the solver_loop. However, the strong scaling
efficiency profile is comparable to similar codes (Mills et al.,
2007).

Upon examination of the results shown in Table 2, at
32768 MPI processes, the weak scaling efficiency Eys (see
Eq. 2) drops to approximately 21 %. To try to ascertain
the routines which hinder scalability, further inspection of
the breakdown between computation and communication
(Fig. 7) shows that total communication considerably in-
creases at scale. This indicates that communication could be
a scalability breaker and should be investigated further (see
health check step no. 4).

3.3.3 Load balance: health check step no. 3

Table 2 shows that the load balance efficiency at the different
scales is between 0.96 and 0.98. This means that the work-
load is equally distributed among the processes for our ide-
alized test case; that is, there is no inherent load imbalance
issue in the algorithm.

3.3.4 Communication: health check step no. 4

Values of communication efficiency shown in Table 2 re-
duce from 0.97 (1024 processes) to 0.64 (32768 processes).
This means that time spent in communication grows at scale.
Therefore, it is worthwhile taking a closer look at what is
happening (Figs. 7 and 8).

Time spent in communication grows with increasing
number of processes. For example, the communication
time constitutes 37 % of the total time when running
the test case with 32768 MPI processes. The main con-
tributors to communication time within the regions of
interest are MPI_Allreduce in setup_solver and
MPI_Waitall in solver_loop. However, the main
communication problem is outside of setup_solver and
solver_loop, e.g., in the initialization phase or the pre-
conditioner as setup_solver and solver_loop com-
munication time do not contribute much. The slight in-
crease in communication time in those two routines could
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Time spent in ParFlow functions
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Figure 5. Time spent in ParFlow functions or routines, where the functions or routines can be divided into four categories: setup, cleanup,
1/0, and solve. The functions in the category “setup” are depicted in green: SubsrfSim — setting up the domain; Solver setup — initializing
the solver. The functions in the category “cleanup” are depicted in yellow: Solver cleanup — finalizing the solver. The functions in the
category “I/O” are depicted in orange: PFB 1/O — ParFlow binary I/O. The functions in the category “solve” are depicted in blue: Porosity
— calculation of the porosity matrix; Geometries — calculation of the simulation domain; MatVec — matrix and vector operations; PFMG
— geometric multigrid preconditioner from HYPRE, Solver functions — miscellaneous functions; HYPRE_Copies — copying data within
HYPRE; NL_F_Eval — setting up the physics and field variables for the next iteration; PhaseRelPerm — setting up the permeability matrix;

KINSol functions — nonlinear solver functions from SUNDIALS.

Wall clock time vs number of MPI processes
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setup_solver
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——solver_loop
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Figure 6. Execution time versus the number of MPI processes for
the regions of interest, running the weak scaling experiment up to
32768 MPI processes.

be attributed to MPI_Allreduce in setup_solver
and MPI_Waitall in solver_loop by further breaking
down the communication routines (see Fig. 8). A trace analy-
sis using Scalasca identified a costly wait-state pattern consti-
tuting 23 % of total time in the initialization phase occurring
in MPI_Allreduce in the preconditioner of the HYPRE
v2.10.1 library. This is an example in which more in-depth
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analysis is needed after the initial health examination to clar-
ify which part of the code must be improved.

3.3.5 Assessing the parallelization strategy: health
check step no. 5

To assess the parallelization strategy of ParFlow as a whole it
is necessary to perform step nos. 3 and 4. Now we are ready
to compute the parallel efficiency, which is shown in Table 2.
We can see that values decrease from 0.93 (1024 processes)
to 0.63 (32768 processes), where the loss in communication
efficiency is the main cause of the reduction in parallel effi-
ciency.

3.3.6 Resource bounds: health check step no. 6

Using the idealized weak scaling test case described in
Sect. 3.1, Score-P was used to track memory usage of the
test case on JUQUEEN. Due to the idealized behavior (sym-
metry) of the test case, all MPI ranks needed roughly the
same amount of memory. For example, at 1024 processes,
each rank needed roughly 95 MB and at 32678 processes
roughly 325MB. Memory usage per MPI rank increases
with scale as the mesh manager in ParFlow is implemented
in such a way that the entire grid information is redun-
dantly stored on each MPI rank. This becomes a scalability
breaker for ParFlow as we can see from Fig. 9; there is a
point at which the memory required will eclipse the mem-
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Figure 7. Wall clock time for communication versus computation for the regions of interest for the weak scaling experiment using the test

case described in Sect. 3.1.
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Figure 8. Wall clock time for MPI calls for the weak scaling experiment using the test case described in Sect. 3.1.

ory available (at around 64 000 cores for this test case) and
this is due to storage of the grid information for the mesh
manager. In ParFlow, the most memory consuming routines
are GetGridNeighbors, PFMGInitInstanceXtra,
KinSolPC,and AllocateVectorData.

3.3.7 Serial performance: health check step no. 7

A Score-P profile measurement with hardware performance
counters was used to inspect serial performance (IPC). The
serial performance for the test case (Sect. 3.1) with 1024 MPI
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processes shows lower-than-ideal values of IPC. For exam-
ple, solver_loop has an IPC value of 0.31 out of 2 (the
theoretical limit on the Blue Gene/Q platform).

Therefore, additional measurements with hardware
counters were collected, which show that a sig-
nificant number of cache misses in L1, stalls, and
mis-predicted branches occur in the following rou-
tines: RichardsJacobianEval, PhaseRelPerm,
Saturation, and N1FunctionEval. Since JUQUEEN
is based on an in-order instruction execution model, mean-
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Memory used by ParFlow vs available memory
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—Total available memory

—— Total memory used by
ParFlow
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Figure 9. Memory usage of the weak scaling experiment described
in Sect. 3.1 vs. the total amount of memory available.

ing instructions are fetched, executed, and committed in
compiler-generated order, in the case of an instruction
stall, all ensuing instructions will stall as well. Branching
on JUQUEEN is therefore very expensive and can cause
pipeline stalls. Thus, the aforementioned routines may
account for the low IPC values.

3.4 Reproducibility

All simulation runs in the scaling study are separated into dif-
ferent subdirectories for each simulation run. Each subdirec-
tory includes the environment description, the XML scripts
used by JUBE, the compilation scripts, the job submission
scripts, the job logs, the model scripts, the postprocessing
analysis, and a description of the version of ParFlow used
along with the ParFlow binary itself. Each directory is self-
contained such that the model can be rerun on JUQUEEN
without using any other external tools or files. After the sim-
ulation is run and the postprocessing step has been executed,
the directory is automatically archived for long-term storage.

3.5 Outcomes of profiling case study and future
developments using RCF

The detailed profiling work illuminated the main bottlenecks
to scalability. To ensure that ParFlow can scale to machines
that are in the same bracket as JUQUEEN, or higher, memory
use, time spent in communication, and time spent in acquir-
ing the solution for each time step need to be addressed.

To reduce the memory usage and to reduce the time spent
in communication, an adaptive mesh refinement (AMR) li-
brary, p4est, is currently being implemented into ParFlow to
function as the parallel mesh manager. The approach was
minimally invasive and preserves most of ParFlow’s data
structures, the configuration system, and the setup and solver
pipeline. The current mesh manager is a barrier to scalabil-
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ity as it requires that all cells store information about ev-
ery other cell. This is reduced to neighboring cells under
p4est, which results in a decrease in memory use (storage
reduction) and a decrease in time spent in communication
(communication reduced to neighboring cells only), allow-
ing ParFlow to scale over all 458,752 cores on JUQUEEN
(Burstedde et al., 2018). Using p4est as the parallel mesh
manager has the additional potential benefit of integrating
the adaptive mesh refinement functionality into ParFlow in
order to address inactive regions (due to heterogeneous forc-
ing, permeability, etc.), causing load imbalances in the real-
world models.

To further improve simulation runtimes using ParFlow, the
RCF is used to benchmark different accelerator-enabled nu-
merical libraries, for a simplified version of ParFlow, across
different HPC architectures. To reduce time spent in pre-
processing model input and postprocessing model output, a
NetCDF reader and writer is under development, with test-
ing of this new feature integrated into the RCF. There is still
room for improvement with regards to serial performance.
However, to tackle this problem effectively, more in-depth
profiling is needed with the aid of performance analysis engi-
neers. For example, we are currently working in conjunction
with performance analysis specialists to identify and refac-
tor individual loops in specific functions for vectorization in
order to speed up serial performance. Naturally, we will use
our RCF to then validate the effectiveness of these new de-
velopments and tuning efforts.

4 Conclusions

Adapting to new developments in HPC architectures, soft-
ware libraries, and infrastructures, while ensuring repro-
ducibility of simulation and analysis results has become chal-
lenging in the field of geoscience. Next-generation massively
parallel HPC systems require new coding paradigms, and
next-generation geoscientific models are based on complex
model implementations and profiling, modeling, and data
processing workflows. Thus there is a strong need for a
streamlined approach to model simulation runs, including
profiling, porting, and provenance tracking.

In this article, we presented our run control framework
as a best practice approach to porting, profiling, and prove-
nance tracking. Implementing an RCF using a workflow en-
gine for the complete modeling chain consisting of prepro-
cessing, simulation run, and postprocessing leads to code that
can be ported easily and tuned to any platform and combina-
tion of compilers, for which dependencies are available in
module format. Each simulation is self-contained and auto-
matically documented, accounting for provenance tracking,
which leads to better supplementary code sharing and ulti-
mately reproducibility. The relevant profiling toolset can be
applied on any platform where the toolset is available, lead-
ing to identification of bottlenecks, code tuning, refactoring,
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and ultimately more efficient use of HPC resources. For ex-
ample, the detailed profiling study of ParFlow led to the iden-
tification of bottlenecks and scalability breakers.

The proposed approach helps the novice user as well as
the developer and can be embedded into regression test-
ing and a continuous integration approach. Using our RCF,
testing, benchmarking, profiling, and running models is less
time consuming and more robust than running models in an
ad hoc fashion, resulting in more efficient use of HPC re-
sources, more strategic code development, and enhanced data
integrity and reproducibility.

Code and data availability. The run control framework, data, and
version of ParFlow used in this paper are available for download
via https://gitlab.maisondelasimulation.fr/EOCOE/Parflow upon re-
quest for access. A tar ball containing the RCF, data, and version of
ParFlow relevant to this study has been included in the Supplement.

www.geosci-model-dev.net/11/2875/2018/
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Appendix A: Profiling tools implemented into the RCF

Table Al describes the profiling tools which are currently
supported by our RCF. New profiling tools can easily be
added into the framework by adding to the profiler.xml
file (see Fig. 2).

Table A1. Description of of the performance analysis tools currently supported by our RCF.

Performance analysis tool Description

Score-P Score-P is a community-maintained scalable instrumentation and performance measurement infrastruc-
ture for parallel codes. It can collect both profiles and event traces.
https://www.score-p.org

Scalasca Scalasca Trace Tools is a collection of scalable trace-based tools for in-depth analyses of concurrent
behavior, in particular regarding wait states in communication and synchronization operations as well
as their root causes. Supports Score-P traces from v2.0 forward.
https://www.scalasca.org

Cube Cube is an interactive analysis report explorer for Score-P profiles and Scalasca trace analysis reports.
http://www.scalasca.org/software/cube-4.x/

Allinea Performance Report  Allinea Performance Report is a performance tool which provides a high-level overview of the runtime
using a single-page report.
https://www.allinea.com/products/allinea- performance-reports

Extrae Extrae is a measurement system which is able to collect traces for use with Paraver.
https://tools.bsc.es/extrae

Paraver Paraver is a flexible and configurable performance analysis tool based on traces collected by the Extrae
measurement system. It supports time-line views as well as histogram and statistics views on the trace
data.
https://tools.bsc.es/paraver

Intel® Advisor Adpvisor is a tool to analyze node-level performance issues, in particular regarding code vectorization
and threading.
https://software.intel.com/en-us/intel-advisor-xe

Darshan Darshan is tool to capture and characterize the I/O behavior of an application.
http://www.mcs.anl.gov/project/darshan-hpc-io-characterization-tool

PAPI PAPI is a library providing a consistent interface for accessing hardware performance counters of CPUs
and other components. While it can be called from application code directly, PAPI is more often used
through other performance measurement systems such as Extrae and Score-P.
http://icl.utk.edu/papi

Geosci. Model Dev., 11, 2875-2895, 2018 www.geosci-model-dev.net/11/2875/2018/


https://www.score-p.org
https://www.scalasca.org
http://www.scalasca.org/software/cube-4.x/
https://www.allinea.com/products/allinea-performance-reports
https://tools.bsc.es/extrae
https://tools.bsc.es/paraver
https://software.intel.com/en-us/intel-advisor-xe
http://www.mcs.anl.gov/project/darshan-hpc-io-characterization-tool
http://icl.utk.edu/papi

W. Sharples et al.: A run control framework for geoscientific applications 2891

Appendix B: Description of performance metrics
gathered from the automated performance metric
workflow

The list of performance metrics gathered in the automated
performance metrics workflow (see Fig. 2), with an explana-
tion of why these particular metrics are useful, is given in the
tables below. Table B1 contains general performance metrics
and Tables B2-B5 contain performance metrics pertaining
to specific areas such as I/O, communication, memory use,
node-level performance, and core-level (serial) performance.

Table B1. Description of general performance analysis metrics currently supported by our RCF.

General performance metric ~ Description

Time (s) Total application wall time to use as a reference.

time_io (s) Average time spent in input—output operations for each rank. When this value is large compared to the
overall runtime, the application spends a significant amount of time in input—output operations. Further
measurements can be taken to illuminate problem areas (see I/O section of Table B2).

time_mpi (s) Average time spent in MPI for each rank. When this value is large compared to the overall runtime, the
application spends a significant amount of time in MPI operations. Further measurements can be taken
to illuminate problem areas (see MPI section of Table B3).

mem_vs_comp Memory bound versus compute bound. Memory bound means that the application would be faster if
the memory bandwidth was larger and compute bound means that the application would be faster if the
CPU was faster. (Close to 1.0 means the application is strongly compute bound, close to 2.0 means the
application is strongly memory bound.)

load_imbalance Ratio of the load imbalance overhead to the critical path duration. This ratio signifies the potential for
speedup if the load imbalance were nonexistent. For example, if a 20 % load imbalance is measured,
fixing this load imbalance would improve the runtime of the code by 20 %.

Table B2. Description of performance analysis metrics pertaining to I/O, currently supported by our RCFE.

I/0O performance metric ~ Description

io_volume (MB) Total number of data in I/O. Can indicate whether I/O is going to be a bottleneck for the application.
io_calls (nb) Total number of I/O calls. Can indicate whether the I/O subroutines are inefficient.

io_throughput (MB s Speed of 1/0. Can indicate whether the HPC architecture is suitable for the application.
avg_io_ac_size (kB) Average number of data per I/O call. Can indicate whether performance could be improved by changing

data size (coalescing reads/writes).
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Table B3. Description of performance analysis metrics pertaining to MPI communication, currently supported by our RCF.

MPI performance metric ~ Description

num_p2p_calls (nb) Average number of point-to-point MPI operations per MPI rank. Can indicate inefficiency of point-to-
point communication pattern.
p2p_comm_time (s) Average time spent in point-to-point MPI operations per MPI rank. Can indicate inefficiency of point-

to-point communication pattern.
p2p_message_size (kB)  Average size of point-to-point MPI messages per MPI rank. Can indicate whether performance could
be improved by changing message size.

num_coll_calls (nb) Average number of collective MPI operations per MPI rank. Can indicate inefficiency of collective
communication pattern.
coll_comm_time (s) Average time spent in collective MPI operations per MPI rank. Can indicate inefficiency of collective

communication pattern.
coll_message_size (kB)  Average message size in collective communications per MPI rank. Can indicate inefficiency of collec-
tive communication pattern.

delay_mpi (s) Total amount of MPI time spent in waiting caused by inefficient communication patterns. If this value
is large, it signifies that the application has a significant number of delays that cause wait states in MPI
operations.

delay_mpi_ratio Ratio of waiting time caused by MPI to total time spent in MPL. If this value is large, it signifies that the

application has a significant number of delays that cause wait states in MPI operations.

Table B4. Description of performance analysis metrics pertaining to memory use, currently supported by our RCF.

Memory performance metric ~ Description

memory_footprint (kB) Average memory footprint per MPI rank. This metric helps to estimate the total amount of main memory
that the program uses while running.
cache_usage_intensity Ratio of total number of cache hits to the total number of cache accesses. If this value is small, the

application uses the cache inefficiently.

Table BS. Description of performance analysis metrics pertaining to node-level performance currently supported by our RCF.

Node performance metric ~ Description

time_omp (s) Total time spent in OpenMP parallel regions. Can indicate load imbalances with regards to inter- and
intra-node operations.

omp_ratio (%) Ratio of the time spent in OpenMP parallel region to the total computation time. Can indicate load
imbalances with regards to inter- and intra-node operations.

delay_omp (s) Total amount of OpenMP synchronization overhead. If this value is large, it signifies that the application
has a significant number of delays that cause wait states in OpenMP constructs.

delay_omp_ratio Ratio of synchronization overhead time in OpenMP to total time spent in OpenMP. If this value is large,
it signifies that the application has a significant number of delays that cause wait states in OpenMP
constructs.

Table B6. Description of performance analysis metrics pertaining core-level performance currently supported by our RCF.

Core performance metric ~ Description

1PC Ratio of total instructions executed to the total number of CPU cycles. This metric shows the workload
of the CPU. Low values usually indicate the presence of pipeline bubbles and/or cache misses and/or
mis-predicted branches.

time_no_vec (s) Wall clock time without compiler vectorization.

vec_eff Ratio of total wall time of the reference run to the total wall time without vectorization. If this value is
low, the application is not vectorized or poorly vectorized.

time_no_fma Total wall time with disabled “fused—multiply—add” (FMA) instructions.

fma_eff Ratio of total wall time of the reference run to the total wall time without fused—multiply—add (FMA)

operations. If this value is low, the application does not use FMA or poorly uses FMA operations.
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