001     851427
005     20220930130156.0
024 7 _ |a 10.1016/j.isci.2018.08.012
|2 doi
024 7 _ |a 2128/19694
|2 Handle
024 7 _ |a pmid:30267672
|2 pmid
024 7 _ |a WOS:000449735000001
|2 WOS
024 7 _ |a altmetric:47084022
|2 altmetric
037 _ _ |a FZJ-2018-05074
082 _ _ |a 050
100 1 _ |a Conrad, Rachel
|0 P:(DE-Juel1)161207
|b 0
|u fzj
245 _ _ |a Rapid Turnover of the Cardiac L-Type CaV1.2 Channel by Endocytic Recycling Regulates Its Cell Surface Availability
260 _ _ |a Amsterdam
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1537270020_10035
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Calcium entry through CaV1.2 L-type calcium channels regulates cardiac contractility. Here, we study the impact of exocytic and post-endocytic trafficking on cell surface channel abundance in cardiomyocytes. Single-molecule localization and confocal microscopy reveal an intracellular CaV1.2 pool tightly associated with microtubules from the perinuclear region to the cell periphery, and with actin filaments at the cell cortex. Channels newly inserted into the plasma membrane become internalized with an average time constant of 7.5 min and are sorted out to the Rab11a-recycling compartment. CaV1.2 recycling suffices for maintaining stable L-type current amplitudes over 20 hr independent of de novo channel transport along microtubules. Disruption of the actin cytoskeleton re-routes CaV1.2 from recycling toward lysosomal degradation. We identify endocytic recycling as essential for the homeostatic regulation of voltage-dependent calcium influx into cardiomyocytes. This mechanism provides the basis for a dynamic adjustment of the channel's surface availability and thus, of heart's contraction.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Stölting, Gabriel
|0 P:(DE-Juel1)156347
|b 1
|u fzj
700 1 _ |a Hendriks, Johnny
|0 P:(DE-Juel1)141764
|b 2
700 1 _ |a Ruello, Giovanna
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kortzak, Daniel
|0 P:(DE-Juel1)157846
|b 4
|u fzj
700 1 _ |a Jordan, Nadine
|0 P:(DE-Juel1)131932
|b 5
|u fzj
700 1 _ |a Gensch, Thomas
|0 P:(DE-Juel1)131924
|b 6
|u fzj
700 1 _ |a Hidalgo, Patricia
|0 P:(DE-Juel1)151357
|b 7
|e Corresponding author
773 _ _ |a 10.1016/j.isci.2018.08.012
|g Vol. 7, p. 1 - 15
|0 PERI:(DE-600)2927064-9
|p 1 - 15
|t iScience
|v 7
|y 2018
|x 2589-0042
856 4 _ |u https://juser.fz-juelich.de/record/851427/files/17229CV1%20%28002%29.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/851427/files/1-s2.0-S258900421830124X-main.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/851427/files/17229CV1%20%28002%29.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/851427/files/17229CV1%20%28002%29.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/851427/files/17229CV1%20%28002%29.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/851427/files/17229CV1%20%28002%29.jpg?subformat=icon-640
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/851427/files/17229CV1%20%28002%29.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/851427/files/1-s2.0-S258900421830124X-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:851427
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161207
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156347
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)157846
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131932
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131924
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)151357
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-4-20110106
|k ICS-4
|l Zelluläre Biophysik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-4-20110106
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IBI-1-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21