000851430 001__ 851430
000851430 005__ 20240313103128.0
000851430 0247_ $$2doi$$a10.1007/s10827-018-0693-9
000851430 0247_ $$2ISSN$$a0929-5313
000851430 0247_ $$2ISSN$$a1573-6873
000851430 0247_ $$2Handle$$a2128/19866
000851430 0247_ $$2pmid$$apmid:30146661
000851430 0247_ $$2WOS$$aWOS:000447740300003
000851430 037__ $$aFZJ-2018-05077
000851430 082__ $$a610
000851430 1001_ $$0P:(DE-HGF)0$$aHeiberg, Thomas$$b0
000851430 245__ $$aFiring-rate models for neurons with a broad repertoire of spiking behaviors
000851430 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2018
000851430 3367_ $$2DRIVER$$aarticle
000851430 3367_ $$2DataCite$$aOutput Types/Journal article
000851430 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1540390716_960
000851430 3367_ $$2BibTeX$$aARTICLE
000851430 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851430 3367_ $$00$$2EndNote$$aJournal Article
000851430 520__ $$aCapturing the response behavior of spiking neuron models with rate-based models facilitates the investigation of neuronal networks using powerful methods for rate-based network dynamics. To this end, we investigate the responses of two widely used neuron model types, the Izhikevich and augmented multi-adapative threshold (AMAT) models, to a range of spiking inputs ranging from step responses to natural spike data. We find (i) that linear-nonlinear firing rate models fitted to test data can be used to describe the firing-rate responses of AMAT and Izhikevich spiking neuron models in many cases; (ii) that firing-rate responses are generally too complex to be captured by first-order low-pass filters but require bandpass filters instead; (iii) that linear-nonlinear models capture the response of AMAT models better than of Izhikevich models; (iv) that the wide range of response types evoked by current-injection experiments collapses to few response types when neurons are driven by stationary or sinusoidally modulated Poisson input; and (v) that AMAT and Izhikevich models show different responses to spike input despite identical responses to current injections. Together, these findings suggest that rate-based models of network dynamics may capture a wider range of neuronal response properties by incorporating second-order bandpass filters fitted to responses of spiking model neurons. These models may contribute to bringing rate-based network modeling closer to the reality of biological neuronal networks.
000851430 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000851430 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
000851430 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x2
000851430 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x3
000851430 536__ $$0G:(EU-Grant)269921$$aBRAINSCALES - Brain-inspired multiscale computation in neuromorphic hybrid systems (269921)$$c269921$$fFP7-ICT-2009-6$$x4
000851430 588__ $$aDataset connected to CrossRef
000851430 7001_ $$0P:(DE-HGF)0$$aKriener, Birgit$$b1
000851430 7001_ $$0P:(DE-Juel1)145211$$aTetzlaff, Tom$$b2$$ufzj
000851430 7001_ $$0P:(DE-HGF)0$$aEinevoll, Gaute T.$$b3
000851430 7001_ $$0P:(DE-Juel1)169781$$aPlesser, Hans E.$$b4$$eCorresponding author
000851430 773__ $$0PERI:(DE-600)1473055-8$$a10.1007/s10827-018-0693-9$$n2$$p103-132$$tJournal of computational neuroscience$$v45$$x0929-5313$$y2018
000851430 8564_ $$uhttps://juser.fz-juelich.de/record/851430/files/Heiberg18.pdf$$yOpenAccess
000851430 8564_ $$uhttps://juser.fz-juelich.de/record/851430/files/Heiberg18.gif?subformat=icon$$xicon$$yOpenAccess
000851430 8564_ $$uhttps://juser.fz-juelich.de/record/851430/files/Heiberg18.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000851430 8564_ $$uhttps://juser.fz-juelich.de/record/851430/files/Heiberg18.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000851430 8564_ $$uhttps://juser.fz-juelich.de/record/851430/files/Heiberg18.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000851430 8564_ $$uhttps://juser.fz-juelich.de/record/851430/files/Heiberg18.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000851430 909CO $$ooai:juser.fz-juelich.de:851430$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000851430 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145211$$aForschungszentrum Jülich$$b2$$kFZJ
000851430 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169781$$aForschungszentrum Jülich$$b4$$kFZJ
000851430 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000851430 9141_ $$y2018
000851430 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851430 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000851430 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000851430 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ COMPUT NEUROSCI : 2015
000851430 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851430 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851430 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851430 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851430 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000851430 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000851430 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000851430 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851430 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000851430 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851430 920__ $$lyes
000851430 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000851430 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000851430 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000851430 9801_ $$aFullTexts
000851430 980__ $$ajournal
000851430 980__ $$aVDB
000851430 980__ $$aUNRESTRICTED
000851430 980__ $$aI:(DE-Juel1)INM-6-20090406
000851430 980__ $$aI:(DE-Juel1)IAS-6-20130828
000851430 980__ $$aI:(DE-Juel1)INM-10-20170113
000851430 981__ $$aI:(DE-Juel1)IAS-6-20130828